BOLLETTINO UNIONE MATEMATICA ITALIANA

DAVID DICKINSON, S. A. WARSI

On a generalized Hermite polynomial and a problem of Carlitz.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 18 (1963), n.3, p. 256–259.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1963_3_18_3_256_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

On a Generalized Hermite Polynomial and a problem of Carlitz

by David Dickinson and S. A Warsi (University of Massachusetts and University of Aligarh) (*)

Summary. - The classical formula relating Hermite and Laguerre polynomials is generalized.

CARLITZ [1] has proposed the question: If $|f_n(x)|$ is a set of polynomials and we define

$$\Phi_{2n}(x) = f_n(x^2),$$

then what conditions on the set $|f_n(x)|$ guarantee that there exists a set of orthogonal polynomials $|\Phi_n(x)|$? One well-known answer (stated by Carlitz) is the following: If the $f_n(x)$ are certain Laguerre polynomials,

(1)
$$f''(x) = (-1)^n n! \ L_{n+1}^{(-1/2)}(x),$$

then the $\Phi_n(x)$ are monic Hermite polynomials,

(2)
$$\Phi_n(x) = 2^{-n} H_n(x),$$

where the odd-indexed $\Phi_n(x)$ are given by

(3)
$$\Phi_{2n+1}(x) = (-1)^n n! \ x \ L_n^{(1/2)}(x^2).$$

We will show here (with a further example) that if $|f_n(x)|$ is a sequence of polynomials orthogonal over a non-negative domain, then $\{\Phi_{2n}(x) = f_n(x^2)\}$ is the set of even polynomials from a set $\{\Phi_n(x)\}$ of orthogonal polynomials.

Let us assume that $|f_n(x)|$ is a set of monic orthogonal polynomials satisfying

(4)
$$f_n(x) - (x + a_n)f_{n-1}(x) + b_n f_{n-2}(x) = 0, (n \ge 2),$$

(*) Pervenuta alla Segreteria dell'U. M. I. il 5 gingno 1963.

where

$$(5) b_n > 0$$

and furthermore that

(6)
$$(-1)^n f_n(0) > 0, \qquad (n \ge 0).$$

Condition (6) can be replaced by the assumption that the domain of orthogonality of the $f_n(x)$ is non-negative. For if the domain is non-negative, the zeros of all the $f_n(x)$ are positive and $(-1)^n f_n(0)$, the product of the zeros of $f_n(x)$, is positive.

The polynomials $\{\Phi_{2n}(x)=f_n(x^2)\}$ have, from (4), a recurrence relation

(7)
$$\Phi_{2n}(x) - (x^2 + a_n)\Phi_{2n-2}(x) + b_n\Phi_{2n-4}(x) = 0, \quad (n \ge 2).$$

Consider now the polynomial

$$\Phi_{2n}(x) = \frac{\Phi_{2n}(0)}{\Phi_{2n-2}(0)} \Phi_{2n-2}(x), \qquad (n \ge 1).$$

Because of (6) the denominator $\Phi_{2n-2}(0)$ is never zero. This polynomial is of degree 2n and has no constant term. Hence we may define the $\{\Phi_m(x)\}$ for odd m by

$$x\Phi_{2n-1}(x) = \Phi_{2n}(x) - \frac{\Phi_{2n}(0)}{\Phi_{2n-2}(0)} \Phi_{2n-2}(x), \qquad (n \ge 1),$$

and thus we have another recurrence relation for the $\{\Phi_n(x)\}$,

(8)
$$\Phi_{2n}(x) \qquad x\Phi_{2n-1}(x) - \frac{\Phi_{2n}(0)}{\Phi_{2n-2}(0)} \Phi_{2n-2}(x) = 0 \qquad (n \ge 1).$$

Between (7) and (8) we may eliminate certain even indexed polynomials and thus obtain

(9)
$$\Phi_{2n-1}(x) = x\Phi_{2n-2}(x) = \frac{\Phi_{2n-4}(0)}{\Phi_{2n-2}(0)}b_n\Phi_{2n-3}(x) = 0, \quad (n \ge 2).$$

Notice that the coefficients

$$-\Phi_{2n}(0)/\Phi_{2n-2}(0)$$
 and $-\Phi_{2n-4}(0)b_n/\Phi_{2n-2}(0)$

of (8) and (9) are, from (5) and (6), both positive. Thus the relations (8) and (9) together form a sufficient condition [3] that the $\{\Phi_n(x)\}$ be orthogonal.

Consider formula (1). If we reintroduce the parameter α of the generalized Laguerre polynomial, the polynomials are still orthogenal over a non-negative domain and we may thus use our result to form a generalization of the Hermite polynomials.

The monic polynomials

$$f_n^{\alpha}(x) = (-1)^n n! \ L_n^{(\alpha)}(x)$$
 $(\alpha > -1),$

where

$$f_n^a(0) = (-1)^n \Gamma(n+1+a) / \Gamma(1+a)$$

have, from the Laguerre polynomial recurrence relation, the recurrence relation

$$f_n^a(x) - (x - 2n + 1 - a)f_{n-1}^a(x) +$$

$$+ (n - 1 + a)(n - 1)f_{n-2}^a(x) = 0, (n \ge 2).$$

From the facts above it follows that the polynomials

(10)
$$\{\Phi_{2n}^{\alpha}(x) = f_n^{\alpha}(x^2) = (-1)^n n! \ L_n^{(\alpha)}(x^2)\}$$

are from an orthogonal set with the recurrence relation

(11)
$$\begin{cases} \Phi_n^a(x) - x \Phi_{n-1}^a(x) + [(n/2) + a] \Phi_{n-2}^a(x) = 0, & (n \text{ even}), \\ \Phi_n^a(x) - x \Phi_{n-1}^a(x) + [(n/2) - (1/2)] \Phi_{n-2}^a(x) = 0, & (n \text{ odd}), \end{cases}$$

and therefore the set $\{\Phi_n^a(x)\}$, with a > -1, is a set of orthogonal polynomials.

For the odd polynomials of this set, we have

$$\Phi_{2n-1}^{a}(x) = \frac{1}{x} \left[\Phi_{2n}^{a}(x) - \frac{\Phi_{2n}^{a}(0)}{\Phi_{2n-2}^{a}(0)} \Phi_{2n-2}^{a}(x) \right]$$

$$= (-1)^{n-1}(n-1)! x^{-1}[-nL_n^{(a)}(x^2) + (n+a)L_{n-1}^{(a)}(x^2)].$$

But, from the contiguous relations for the Laguerre polynomials, page 203 of [2], it readily follows that

(12)
$$\Phi_{2n-1}^a(x) = (-1)^{n-1}(n-1)! \ x \ L^{(a+1)}(x^2), \ (a > -1), \ (n \ge 1).$$

The polynomials $|\Phi_n(x)|$ given by (2) are the same as the polynomials $|\Phi_n^{-1/2}(x)|$ formed by setting a = -1/2 in (10) and (12). Thus the polynomials $|\Phi_n^a(x)|$ are generalizations of the Hermite polynomials. The orthogonality relation is, for a > -1,

(13)
$$\int_{-\infty}^{+\infty} \Phi_n^a(x) \Phi_n^a(x) |x|^{2a+1} e^{-x^2} dx =$$

$$= \begin{cases} 0 \text{ for } m \neq n, \\ \Gamma\left(\frac{n}{2} + \frac{3}{2} + a\right) \Gamma\left(\frac{n}{2} + \frac{1}{2}\right) \text{ for } n \text{ odd,} \\ \Gamma\left(\frac{n}{2} + 1 + a\right) \Gamma\left(\frac{n}{2} + 1\right) \text{ for } n \text{ even.} \end{cases}$$

Ther hypergeometric representation is

$$\Phi_n^a(x) = x^n {}_{\! 2} F_0(-\frac{n}{2}, -\frac{n}{2} - a; -; -1/x^2), \qquad (n \text{ even}),$$

$$\Phi_n^a(x) = x^n {}_{\! 2} F_0(-\frac{n}{2} + \frac{1}{2}, -\frac{n}{1} + \frac{1}{2} - a; -; -1/x^2), \quad (n \text{ odd}).$$

Each $\Phi_n^a(x)$ satisffies a differential equation:

$$[x^{2}D^{2} + (1 + 2a - 2x^{2})xD + (2nx^{2})] \Phi_{n}^{a}(x) = 0, \quad (n \text{ even})$$

$$[x^{2}D^{2} + (1 + 2a - 2x^{2})xD + (-1 - 2a + 2nx^{2})] \Phi_{n}^{a}(x) = 0, \quad (n \text{ odd}).$$

The formulas (13), (14), and (15) and follow from the analogous formulas for the Laguerre polynomials by simple changes of variable.

BIBLIOGRAPHY

- [1] LEONARD CARLITZ, The relationship of the Hermite to the Laguerre polynomials, Boll. Un. Mat. Ital., vol. 16 (1961), pp. 386.390.
- [2] E. D. RAINVILLE, Special fonctions, New York, Macmillan, 1960.
- [3] J. Shohat, The relation of the classical orthogonal polynomials to the polynomials of Appell, Amer. J. Math., vol. 58 (1936), pp. 453-464.