# Bollettino <br> Unione Matematica Italiana 

B. N. SAhney<br>Some Tauberian conditions for summability $\left(R^{\prime}, p\right)$ of trigonometrical series.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 17 (1962), n.1, p. 4-14.

Zanichelli
[http://www.bdim.eu/item?id=BUMI_1962_3_17_1_4_0](http://www.bdim.eu/item?id=BUMI_1962_3_17_1_4_0)

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

[^0]
# Some Tauberian conditions for summability ( $R^{\prime}, p$ ) of trigonometrical series. 

Nota di B. N. Sahney (a Sagar, India) (*)

Summary. - Tauberian conditions for summability ( $\mathrm{R}^{\prime}$, 1) has been obtained by Sunouchi. These results generalise those of Szász. Sunouchi-Hirukawa have extended those of the first author. The author here invetigates the Tauberian conditions for summability ( $\mathbf{R}^{\prime}, \mathrm{p}$ ) of which the results of Sunouchi and Sunouchi-Hirukawa are particular cases.

1. The series $\sum_{\nu=1}^{\infty} a_{\nu}$ is said to be summable $\left(R^{\prime}, p\right)$ to the sum zero if

$$
\begin{equation*}
F(t)=t \sum_{\nu=1}^{\infty} s_{\nu}\left(\frac{\sin v t}{v t}\right)^{p} \tag{1.1}
\end{equation*}
$$

converges to the sum zero as $t \rightarrow o$, where $s_{n}$ is the $n-t h$ partial sum of the series $\sum_{\nu=1}^{\infty} a_{\nu}$ and $p$ is an integer (finite) such that $p \geq 1$.

Summability $\left(R^{\prime}, 1\right)$ was initially studied by Szasz [1]. The result due to Szàsz was extended by Sunouchi [2] as follows:

Theorem - S. If

$$
\begin{equation*}
S_{n} \equiv \sum_{\nu=1}^{n} s_{\nu}=o\left(n^{(1-\delta)}\right) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\nu=n}^{\infty} \frac{\left|a_{\nu}\right|}{\nu}=O\left(n^{-(1-\delta)}\right) \tag{1.3}
\end{equation*}
$$

then the series $\sum_{\nu=1}^{\infty} a_{\nu}$ is summable $\left(R^{\prime}, 1\right)$ to the sum zero as $t \rightarrow 0$ for $o<\delta<1$.
(*) Pervenuta alla Segreteria dell' U. M. I. il 16 ottobre 1961.

Generalising this result Hirdkawa and Sunouchi [3] proved the following theorem:

Theorem - H-S. Let $s_{n}^{\beta}$ be the $(c, \beta)$ sum of the series $\sum_{\nu=1}^{n} a_{\nu}$. If

$$
\begin{equation*}
s_{n}^{\beta}=o\left(n^{\beta(1-\delta)}\right) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\nu=n}^{\infty} \frac{\left|a_{\nu}\right|}{v}=O\left(n^{-(1-\delta)}\right) \tag{1.5}
\end{equation*}
$$

where $0<\delta<1,0 \leq \beta$, then the series $\sum_{\nu=1}^{\infty} a_{\nu}$ is summable $\left(R^{\prime}, 1\right)$ to the sum zero as $t \rightarrow 0$.

Yano [4] has further extended these results on the Tauberian conditions for summability ( $R^{\prime}, 1$ ). He has also obtained analogous results for summability $(R, 1)$.

The object here is to discuss the summability ( $R^{\prime}, p$ ) of the series $\sum_{\nu=1}^{\infty} a_{\nu}$ for all $p \geq 1$ (finite integer). We shall prove the following theorem of which Theorem- $S$ and Theorem $H-S$ will be particular cases for $p=1, \beta=1$ and $p=1, v=\beta(1-\delta)$ respectively.

Theorem A. - Let $\mathrm{S}_{n}^{\beta}$ be the $(\mathrm{c}, \beta)$ sum of the series $\sum_{\nu=1}^{\infty} \mathrm{L}, \mathrm{v}$ and

$$
\begin{equation*}
S_{n}^{\beta}=o\left(n^{r}\right) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\nu=n}^{\infty} \frac{\left|a_{\nu}\right|}{\nu}=O\left(n^{-(1-\delta)}\right) \tag{1.7}
\end{equation*}
$$

where $\beta>r>0, r+1>p, \delta=p(\beta-r) /(\beta+1-p)$ and $0<\delta<1$, then the series $\sum_{\nu=1}^{\infty} a_{\nu}$ is summable $\left(\mathrm{R}^{\prime}, p\right)$ to the sum zero for all finite, positive integral values of $p$.
2. We shall require the following lemmas in the sequel.

Lemica 1. We write

$$
\begin{equation*}
\Phi(t)=\left(\frac{\sin t}{t}\right)^{p} \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(\frac{d}{d t}\right)^{k} \Phi(t) \equiv \Phi^{(k)}(t)=O(1), \text { as } t \rightarrow 0 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{(k)}(t)=O(t-p), \text { as } t \rightarrow \infty \tag{2.3}
\end{equation*}
$$

This is due to Kanno [5].
Lemma 2. - If

$$
\begin{equation*}
\sum_{n}^{\infty} \frac{\left|a_{v}\right|}{v}=O\left(n^{-(1-\delta)}\right) \tag{2.4}
\end{equation*}
$$

then

$$
\begin{align*}
& \bar{S}_{n}^{0} \equiv \bar{s}_{n} \equiv \sum_{1}^{\infty}\left|a_{\nu}\right|=O\left(n^{\delta}\right)  \tag{2.5}\\
& S_{n}^{0} \equiv s_{n} \equiv \sum_{1}^{\infty} a_{\nu}=O\left(n^{\delta}\right) \tag{2.6}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{\nu=n}^{\infty} \frac{\left|s_{\nu}\right|}{v^{2}}=O(n-(1-\delta)) . \tag{2.7}
\end{equation*}
$$

This is due to Sunouchi (See Sunouchi [2]).
3. Proot of the theorem. We write

$$
\begin{gather*}
t \sum_{\nu=1}^{\infty} s_{\nu} \Phi(v t)=t\left(\sum_{1}^{n}+\sum_{n+1}^{\infty}\right) s_{\nu} \Phi(v t) \\
=\Phi_{1}+\Phi_{2}, \text { say. } \tag{3.1}
\end{gather*}
$$

Now by Lemma 2, we have

$$
\begin{aligned}
\sum_{\nu=n}^{\infty}\left|\frac{s_{v}}{\nu^{p}}-\frac{s_{\nu+1}}{(\nu+1)^{p}}\right| & \left.=\sum_{\nu=n}^{\infty}| | \frac{s_{\nu}-s_{\nu+1}}{\nu^{p}}+\left(\frac{1}{\nu p}-\frac{1}{(\nu+1)^{p}}\right) s_{\nu+1}\right\} \mid \\
& \leq A \sum_{n}^{\infty} \frac{\left|a_{\nu}\right|}{\nu^{p}}+B \sum_{n}^{\infty} \frac{\left|s_{\nu}\right|}{\nu(\nu+1)^{p}} \\
& =O\left(\frac{1}{n^{p-\delta}}\right), \text { by Lemma } 2 .
\end{aligned}
$$

Moreover, by Abel's transformation

$$
\begin{align*}
t \sum_{\nu=n}^{\infty} s_{\nu} \Phi(\nu t) & =t \sum_{\nu-n}^{\infty} \frac{s_{\nu}(\sin \nu t)^{p}}{(\nu t)^{p}}  \tag{3.2}\\
& =O(t-p) \sum_{\nu=n}^{\infty}\left|\frac{\mathbf{S}_{v}}{\nu p}-\frac{s_{\nu+1}}{(v+1)^{p}}\right| \\
& +O(t-p)\left(\frac{1}{n^{p-\delta}}\right)
\end{align*}
$$

which is convergent for all $t \neq 0$. The fact is evident if $t=0$
Now for a given positive $\varepsilon$, we write

$$
\begin{equation*}
n=(\varepsilon t)^{-\rho} \text { where } \frac{p}{p-\delta}=\rho=\frac{\beta+1-p}{r+1-p} \tag{3.3}
\end{equation*}
$$

Estimating now $\Phi_{2}$, we have

$$
\begin{align*}
\Phi_{2} & =t \sum_{n+1}^{\infty} s_{\nu} \Phi(\nu t)  \tag{3.4}\\
& =t \sum_{n+1}^{\infty} \frac{s_{\nu}}{\nu p} \cdot\left(\frac{\sin \nu t}{t}\right)^{p} \\
& =O(t-p)\left\{\sum_{n+1}^{\infty}\left|\frac{s_{\nu}}{\nu p}-\frac{s_{\nu+1}}{(\nu+1)^{p}}\right|+\frac{\mid s_{n}}{n^{p}}\right\} \\
& =O\left(t-p_{n}-(p-\delta)\right), \text { by }(3.2), \\
& =O\left(t-p(\varepsilon t)^{\circ(p-\delta)}\right), \text { by }(3.3) \\
& =O\left(\varepsilon^{p}\right), \text { by }(3.3) .
\end{align*}
$$

Next

$$
\begin{align*}
& \Phi_{1}=t \sum_{\nu=1}^{n} s_{\nu} \Phi(\nu t)  \tag{3.5}\\
& =-t \sum_{\nu=1}^{n-1} \int_{\nu}^{\nu-1} s(x) \Phi(x t) d x \\
& =-t \int_{0}^{n} s(x) \Phi(x t) d x .
\end{align*}
$$

Now we take an integer $k \geq 1$ from (1.6), (2.6) in Lemma 2 and by Riesz's convexity Theorem (See Kanno [5]), we have

$$
\left\{\begin{array}{l}
s_{n}^{\mu}=o\left(n^{\left.\frac{\delta(\beta-\mu)}{\beta}+\frac{r \mu}{\beta}\right)}\right.  \tag{3.6}\\
s_{n}^{k}=o n^{(k-r-\beta)}
\end{array} \quad \mu=1,2, \ldots, k-1\right.
$$

Let $S^{0}(x)=s(x)=\sum_{\nu=1}^{n} a_{\nu}$ when $n \leq x<n+1$,

$$
S q(x)=\frac{1}{\sqrt{q}} \int_{0}^{x} S^{0}(x)(x-t)^{q-1} d t, q>0
$$

and

$$
D_{n}^{\mu} \equiv\left[\frac{d^{\mu}}{d x^{\mu}}\right]_{x=n}
$$

On integration by parts $k$ times and by virtue of (3.5) we have

$$
\begin{aligned}
\Phi_{1}= & -t \int_{0}^{n} S^{0}(x) \Phi(x t) d x \\
= & t \sum_{\nu=1}^{k-1}(-1)^{\mu} S^{\mu}(n) D_{n}^{\mu-1} \Phi(x t) \\
& +(-1)^{k} t S^{k}(n) D_{n}^{k-1} \Phi(x t) \\
& +(-1)^{k+1} t \int_{0}^{n} S^{k}(x)\left(\frac{d^{k}}{d x^{k}}\right) \Phi(x t) d x
\end{aligned}
$$

$$
\left\{\begin{array}{l}
=\Phi_{3}+\Phi_{4}+\Phi_{5}, \text { say for } \beta<k  \tag{3.7}\\
=\Phi_{3}+\Phi_{4}, \text { for } \beta=k
\end{array}\right.
$$

Now, since

$$
t S^{\mu}(n) D_{n}^{\mu-1} \Phi(x t)=S^{\mu}(n) t \mu\left[\frac{d^{\mu-1}}{d(x t)^{\mu-1}} \Phi(x t)\right]_{x=n}
$$

and hence

$$
\begin{aligned}
\Phi_{a} & =t{ }_{\mu=1}^{k-1}(-1) \mu S \mu(n) D_{n}^{\mu-1} \Phi(x t) \\
& =o\left(n^{\frac{\delta(\beta-\mu)}{\beta}+\frac{r \mu}{\beta}} \cdot t \mu \cdot n-p \cdot t-p\right), \text { by }(3.6) . \\
& =o\left(t^{\mu-p} \cdot(\varepsilon t)-\rho\left(-p+\frac{\delta(\beta-\mu)}{\beta}+\frac{r \mu}{\beta}\right)\right) \\
& \left.\left.=o\binom{\rho\left(-\rho-\frac{\delta(\beta-\mu)}{\beta}-r^{r \mu} \beta\right.}{\beta} \cdot t^{\mu-p+\rho\left(p-\frac{\delta(\beta-\mu)}{\beta}-r_{\mu}\right.}{ }^{\mu}\right)\right), \text { by }(33) .
\end{aligned}
$$

In this expression the index of the power of $t$ is

$$
\begin{aligned}
\mu-p & +\rho\left(p-\frac{\delta(\beta-\mu)}{\beta}-\frac{r \mu}{\beta}\right) \\
& \left.=\left[(\mu-p) \beta-\frac{p}{p-\delta} \delta \beta(\delta-p)+\mu(r-\delta)\right\}\right] / \beta \\
& =\frac{1}{\beta}\left[\beta \mu-\frac{p}{p-\delta} \cdot \mu(r-\delta)\right], \text { by }(3.3) \\
& =\frac{\mu}{\beta}\left[\beta-\frac{\beta+1-p}{r+1-p}(r-\delta)\right], \text { by }(3.3) \\
& =\frac{\mu(\beta-r)}{\beta(r+1-p)}, \text { since } \delta=\frac{p(\beta-r)}{r+1-p}
\end{aligned}
$$

which is positive for all $\mu=1,2, \ldots, k-1$ and $0<\delta<1, \beta \geq 0$, $p \geq 1$.

Therefore

$$
\begin{equation*}
\Phi_{3}(t)=o(1), \text { as } t \rightarrow 0 . \tag{3.8}
\end{equation*}
$$

Evaluating $\Phi_{4}(t)$, we obtain

$$
\begin{aligned}
\Phi_{4}(t) & =(-1)^{k} t S^{k}(n) D_{n}^{k-1} \Phi(x t) \\
& =o\left(t \cdot n^{k+r-\beta} \cdot t^{k-1} \cdot t-p \cdot n-p\right), \text { by }(3.6) \text { and Lemma } 2, \\
& =o\left(t^{k-p} \cdot(\varepsilon t)-\rho(k+r-\beta-p)\right), \text { by (3.3). }
\end{aligned}
$$

In this expression the index of the power of $t$ is

$$
\begin{aligned}
k-p-p(k+r-\beta-p) & =\frac{1}{p-\delta}\{(p-\delta)(k-p)-p(k+r-\beta-p)\}, \text { by }(3.3) \\
& =\frac{1}{p-\delta}\{-\delta k+\delta p-p r+p \beta\} \\
& =\frac{1}{p-\delta}\{-k \delta+(\beta+1) \delta\}, \text { since } \delta=\frac{p(\beta-r)}{\beta+1-p} \\
& =\frac{\delta}{p-\delta}\{\beta+1-k\}
\end{aligned}
$$

which is positive, since $r+1>p$ and $\beta>r$. Hence, we have

$$
\begin{equation*}
\Phi_{4}(t)=o(1), \text { as } t \rightarrow 0 \tag{3.9}
\end{equation*}
$$

Estimating $\Phi_{5}(t)$, we have

$$
\begin{align*}
& \Phi_{5}(t)=(-1)^{k+1} t \int_{0}^{n} S^{k}(x) \frac{d^{k}}{d x^{k}} \Phi(x t) d x  \tag{3.10}\\
& =(-1)^{k+1} t \int_{0}^{n} \frac{d^{k}}{d x^{k}} \Phi(x t) d x \int_{0}^{x}(x-u)^{k-\beta-1} S^{\beta}(u) d u \\
& =(-1)^{k+1} t \int_{0}^{n} S^{\beta}(u) d u \int_{u}^{n}(x-u)^{k-\beta-1} \frac{d^{k}}{d x^{k}} \Phi(x t) d x, \\
& \text { by change of order of integration } \\
& =(-1)^{k+1} \int_{0}^{t^{-1}} d u \int_{u}^{u+t^{-1}} d x+\int_{t^{-1}}^{(\varepsilon t)^{-\rho}} d u \int_{u}^{u+t^{-1}} d x+\int_{0}^{(\varepsilon t)^{-\rho-t^{-1}}} d u \int_{u+t^{-1}}^{(\varepsilon t)^{-\rho}} d x \\
& \left.-\int_{(\varepsilon t)^{-\rho-t^{-1}}}^{(\varepsilon t)^{-\rho}} d u \int_{(\varepsilon t)^{-\rho}}^{u+t^{-1}} d x\right\} S^{\beta}(u)(x-u)^{k-\beta-1} \frac{d^{k}}{d x^{k}} \Phi(x t) \\
& =\psi_{1}(t)+\psi_{2}(t)+\psi_{3}(t)+\psi_{4}(t), \text { say. }
\end{align*}
$$

Considering $\psi_{1}(t)$, we have

$$
\begin{align*}
\Psi_{1}(t) & =(-1)^{k+1} t \int_{0}^{t^{-1}} S^{\beta}(u) d u \int_{u}^{u+t^{-1}}(x-u)^{k-\beta-1} \frac{d^{k}}{d x^{k}} \Phi(x t) d x  \tag{3.11}\\
& \left.=O(t) \int_{0}^{t^{-1}}\left|S^{\beta}(u)\right| d u \int_{u}^{u+t^{-1}} t^{k} \cdot(x-u)^{k-\beta-1} d x\right\}, \text { by Lemma } 1 \\
& =O(t)^{k+1} \int_{0}^{t-1} o\left(u^{r}\right) d u\left[(u-x)^{k-\beta}\right]_{u}^{u+t^{-1}} \\
& =o(t \beta+1)\left[u^{r+1}\right]_{0}^{t^{-1}} \\
& =o(t \beta-r) \\
& =o(1), \text { as } t \rightarrow o, \text { since } \beta>r>0
\end{align*}
$$

Next

$$
\begin{align*}
\psi_{2}(t) & =(-1)^{k+1} \int_{t^{-1}}^{(\varepsilon t)^{-\rho}} S^{\beta}(u) d u \int_{u}^{u+t^{-1}}(x-u)^{k-\beta-1} \frac{d^{k}}{d x^{k}} \Phi(x t) d x  \tag{3.12}\\
& =O\left(t^{k+1}\right) \int_{t^{-1}}^{(\varepsilon t)-\rho} S^{\beta}(u)|d u|_{u}^{u+t^{-1}}(x-u)^{k-\beta-1} \cdot O(x t)^{-p} d x \\
& =o\left(t^{k+1-p) \int_{t^{-1}}^{(\varepsilon t)^{-\rho}} u^{r} \cdot u-p\left[(x-u)^{k-\beta}\right]_{u}^{u+t^{-1}} d u}\right. \\
& =o\left(t^{k+1-p) \int_{t^{-1}}^{(\varepsilon t)^{-\rho}} u^{r-p} \cdot d u t^{\beta-k}}\right. \\
& =o(t \beta+1-p)\left[u^{r+1-p}\right]_{t^{-1}}^{(\in t-\rho}
\end{align*}
$$

$$
\begin{aligned}
& =o(t-(r-\beta))+o(1), \text { by }(3.3) \\
& =o(1), \text { as } t \rightarrow 0
\end{aligned}
$$

Considering $\psi_{3}(t)$ and on integrating, by parts its inner integral, we get

$$
\begin{align*}
\psi_{3}(t)= & (-1)^{k+1} \int_{0}^{(\varepsilon t)^{-\rho}-t^{-1}} S^{\complement}(u) \int_{u+t^{-1}}^{(\varepsilon t)-\rho}(x-u)^{k-\beta-1} \frac{d^{k}}{d x^{k}} \Phi(x t) d x  \tag{3.13}\\
= & (-1)^{k+1} \int_{0}^{(\varepsilon t)^{-\rho-t^{-1}}} S^{\beta}(u) d u\left\{\left[(x-u)^{k-\beta-1} \frac{d^{k-1}}{d x^{k-1}} \Phi(x t)\right]_{u+t^{-1}}^{(\varepsilon t)^{-\rho}}\right. \\
& \left.-(k-\beta-1) \int_{u+t^{-1}}^{(\varepsilon t)^{-\rho}}(x-u)^{k-\beta-2} \frac{d^{k-1}}{d x^{k-1}} \Phi(x t) d x\right\} \\
= & X_{1}(t)-(k-\beta-1) X_{2}(t), \text { say, }
\end{align*}
$$

where

$$
\begin{align*}
X_{1}(t)= & O\left(t^{k}\right) \int_{0}^{(\varepsilon t)^{-\rho}-t^{-1}} S^{\beta}(u) d u\left\{t-p\left[(\varepsilon t) \rho p \cdot\left((\varepsilon t)^{-\rho}-u\right)^{k-\beta-1}\right.\right.  \tag{3.14}\\
& \left.\left.\quad-\left(u+t^{-1}\right)^{-p} t^{-k+\beta+1}\right]\right\} \\
= & X_{3}(t)+X_{4}(t) \text { say. }
\end{align*}
$$

Determining the value of $X_{3}(t)$, we obtain

$$
\begin{aligned}
X_{3}(t)= & o\left(\epsilon^{p \rho}\right)\left(t^{k-p+\rho p}\right) \int_{0}^{(. t)^{-\rho}} u^{r}\left((\varepsilon t)^{-\rho} \quad u\right)^{h-\beta-1} d u \\
& =o\left(t^{k-p+\rho(p-k-r+\beta)}\right)
\end{aligned}
$$

Here the exponent of $t$ is

$$
\begin{aligned}
k-p+\rho(p-k-r+\beta) & =\frac{1}{(r+1-p)}\{(k-p)(r+1-p)+(\beta+1-p)(p-k-r+\beta)\} \\
& =\frac{(\beta-r)(\beta+1-k)}{(r+1-p)}, \text { by }(3.3)
\end{aligned}
$$

which is positive, since $k<\beta+1$.

## Hence

$$
\begin{equation*}
X_{3}(t)=o(1), \text { as } t \rightarrow o \tag{3.15}
\end{equation*}
$$

Also

$$
\begin{align*}
X_{4}(t) & =o(t \beta+1-p) \int_{0}^{(\varepsilon t)^{-\rho} t^{-1}} u^{r}\left(u+t^{-1}\right)^{-p} d t  \tag{3.16}\\
& =o\left(t^{\beta+1-p}\right)\left[u^{r+1-p}\right]_{0}^{(\varepsilon t)-\rho} \\
& =o(t(\beta+1-p)-\rho(r+1-p))
\end{align*}
$$

$=o(1)$, as $t \rightarrow 0$, by virtue of (3.3).
Thus from (3.14), (3.15) and (3.16) we get

$$
\begin{equation*}
X_{1}(t)=o(1) \text { as } t \rightarrow 0 \tag{3.17}
\end{equation*}
$$

Estimating $X_{2}(t)$, we have

$$
\begin{align*}
X_{2}(t) & =O\left(t^{k}\right) \int_{0}^{(\varepsilon t)^{-\rho}-t^{-1}}\left|S^{\beta}(u)\right| d u \int_{u+t^{-1}}^{(\varepsilon t)^{-\rho}} O(x t)^{-p}(x-u)^{k-\beta-2} d u  \tag{3.18}\\
& =o\left(t^{k-p} \int_{0}^{(\varepsilon t)^{-\rho-t^{-1}}} \int_{0}^{r-p} u^{\left.r-u)^{k-\beta-1}\right]_{u+t^{-1}}^{(\varepsilon t)^{-\rho}} d u}\right. \\
& =o(t \beta+1-p) \int_{0}^{(\varepsilon t)^{-\rho-t^{-1}}} u^{(r-p)} d u+o\left(t^{k-p-\rho(k-\beta-1)}\right) \int_{0}^{(\varepsilon t)^{-\rho-t^{-1}}} u^{r-p} d u \\
& =o\left(t \beta-1-p+t^{k-p-\rho(k-\beta-1)}\right)\left(u^{r-p+1)_{0}(\varepsilon t)-\rho-t^{-1}}\right. \\
& =o(1) \text { as } t \rightarrow 0, \text { by viture of }(3.3) \text { and (3.9). }
\end{align*}
$$

On collecting (3.13), (3.17) and (3.18), we find that

$$
\begin{equation*}
\psi_{3}(t)=o(1), \text { as } t \rightarrow 0 \tag{3.19}
\end{equation*}
$$

Lastly we observe that

$$
\begin{align*}
\psi_{4}(t) & =(-1)^{k+1} t \int_{(\varepsilon t)^{-\rho}-t^{-1}}^{(\varepsilon t)^{-\rho}} S^{\beta}(u) d u \int_{(\varepsilon t)-\rho}^{u+t^{-1}}(x-u)^{k-\beta-1} \frac{d^{k}}{d x^{k}} \Phi(x t) d x  \tag{3.20}\\
& =o\left(t^{k+1-p}\right) \int_{(\varepsilon t)^{-\rho-t^{-1}}}^{(\varepsilon t)^{-\rho}} u^{r} \cdot t \rho p d u\left[(x-u)^{k-\beta}\right]_{(\varepsilon t)^{-\rho}}^{u+t^{-1}} \\
& =o\left(t^{\beta+1-p+\rho p)\left[u^{r+1}\right]_{(\varepsilon t)-\rho-t^{-1}}^{(\varepsilon t)^{-\rho}}}\right. \\
& =o\left(t^{(\beta+1-p)-\rho(r+1-p)}\right) \\
& =o(1), \text { as } t \rightarrow 0, \text { by }(3.3) .
\end{align*}
$$

Now on collecting (3.10), (3.11), (3.12) and (3.20) we get

$$
\begin{equation*}
\Phi_{5}(t)=o(1) \text { as } t \rightarrow 0 \tag{3.21}
\end{equation*}
$$

Combining (3.1), (3.4) and (3.20) we find that for an arbitrarily chosen $\varepsilon$,

$$
\left|t \sum_{\nu=1}^{\infty} s_{\nu} \Phi(\nu t)\right|<A \in^{p}, \text { as } t \rightarrow 0
$$

Since $\varepsilon$ is arbitrarily small, hence we have

$$
\begin{equation*}
t \sum_{\nu=1}^{\infty} s_{\nu} \Phi(v t) \rightarrow 0 \text { as } t \rightarrow 0 \tag{322}
\end{equation*}
$$

This completes the proof of Theorem $A$.
I am indebted to professor M. L. Misra for his suggestions during the preparation of this paper.

## REFERENCES

[1] Szàsz. O. Tauberian Theorems for Summability ( $\mathbf{R}_{\mathbf{1}}$ ), «Amer. Jour. of Maths. », 73 (1951) 779-791.
[2] Sunouchi, G. Tauberian Theorems for Riemann Summability, sTohoku Math. Jour. , 5 (1953) 34-42.
[3] Hirukawa, H. and Sunouchi, G. Two Theorems on the Riemann Summability, «Tohoku Math. Jour.", 5 (1953) 261-267.
[4] Yano, K Notes on the Tauberian Theorems for Riemann Summability, «Tohoku Math. Jour.», 10 (1958), 19-31.
[5] Kanno, K. On the Riemann Summability, a Tohoku Math. Jour., 6 (1954) 150๊-161.


[^0]:    Articolo digitalizzato nel quadro del programma
    bdim (Biblioteca Digitale Italiana di Matematica)
    SIMAI \& UMI
    http://www.bdim.eu/

