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A proof and extension of Brouwer’s fixed point theorem
for the closed 2-cell.

Nota di SmBaT ABIAN (a Philadelphia, U.S.A.) (*) (%)

Summary, - The main result in this paper is Corollary 3. according to
which if a continuous map f of a closed 2-cell E into Euclidean plane
R?> E maps the boundary of K into E then f leaves at least one
point fixed.

A proof is given here (°) of the following extension of BRrou-
WER’'S fixed point theorem for a closed circular disc. No use is
made of the formal techniques ol Topology. The results in this
paper will later be extended and generalized in various ways.

THEOREM. — Let 7 be a closed circular disc with circumference
C in a Euclideaw plane R* in which a positive sense for wmeasure-
ment of angles has been assigned, and f a continuous map of 7
into BR* which leaves no point of C fixed. If there exists a point z
iuside C and a constant angle « such that for no point ce C is o
an angle from the vector c, fic) to the vector z, ¢ then £ leaves at
least one point fixed.

It is clear that Brouwger’s theorem for the closed 2-cell,
Wwhich is equivalent to the assertion that a continuous map of Z
into itself has a fixed point, is an easy consequence of the theorem.
In fact, it is enough to take » =10 and let z be any point inside
C. Also, we note that in the above theorem, f does not necessarily
map. Z into Z as it is required in the classical case.

Before proving the theorem, we state the following special cases.

(") Pervenuta alla Segreteria dell’ U. M. I. il 21 luglio 1961.
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CoROLLARY 1. — Let 7 be a closed circular disc in a Euclidean
plane R, with center O and circumference C, and f a continuous
map of Z into R* which leaves no point of C fixed and such that

i) for mo point c e C is the direction from c to f(c) the same
as the direction from O fo c;

or

ii) for no poinl c € C is the direction from c lo f(c) the same
as the direction from c to O.

Then £ leaves at least one point fixed.

The corollary is obtained from the theorem by taking z at O
and taking « = 0 in Case ¢) and x —= = radians in Case 43).
An immediate consequence of Corollary 1 with hypothesis 4) is

COROLLARY 2. — If a continuous map £ of the closed circular
disc 7 into R* D 7 wmaps the circumference C of Z into %, then f
leaves at least one point fixed.

By virtue of the ScHOENFLIES theorem, modified to apply to
a JORDAN curve and its exterior, Corollary 2 implies the following
result, which has weaker hypotheses than the classical BROUWER
fixed point theorem.

CorROLLARY 3. - If a continuous map f of a closed 2-cell B into
R* > E maps the boundary of E into B, then f leaves at least one
point fixed.

Proor:- oF THE THEOREM. - In what follows, a given fixed
directed axis X as initial direction is assumed for measurement
of angles in R®. Also, an angle and its radian measure will be
denoted by the same symbol. The parameters #, s are real and
range over the closed interval [0,1]. A continuous wvector shall
mean a continuous vector function of ¢{ in R2% Continuous vectors
are denoted here by U(f), V(i), ®(t, s), efec.

Let U(f) be a continuous vector with length | U(#)|3=0. If Ut)
denotes an angle from the X direction to the direction of U(?).
such that 0<< U,(6)<21t and U’(f) is continuous, it is clear that
U(#) is thus uniquely determined, single-valued and continuous.
The notation U(f) will henceforth be used only when | U(#) |30,
U(t) is continuous, and with the stated conventions on continuty
of U(#) and value of U(0).
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LeMMa. - Let « be a real constant and U(t), V(i) two continuous
vectors, with | U(t)|5=0, | V(t)| 3= 0, such that

(1) Ud) = 00) + 2m=,  V(1)= V(0) +2ux, (m, n integers)

and, for every integer k and every t e [0,1],

) V() — T # o + 2kx.
Then
(3) (1) — 0(0) = V(1) — V(0).

Proor. - By (1)
(4) V(1) — O(1) = V(0) — T(0) + 2(n — m)r.

Hence, if m==n, we see that

maximum [V(f) — ﬁ(\t)] — min%mum[ (&) — ﬁ(\t)] = 2=.
t

Conseqcently, for some integer k£ and some t, the continuous
function Tf(\t) - U’(f) must assume the value « -+ 2kw, contrary fto
2). Thevefore m — ». and (4) implies (3).

Continuing with the proof of the theorem, suppose now that
f leaves no point of 7 fixed. As { varies from 0 to 1, let the point
c(t) describe C once at a uniform rate in the positive sense. so
that ¢(0) = ¢(1). Then. from the hypotheses of the theorem we see
easily that the two vectors c(f), f(c(?)) = F(¢) and 2, c(f) = G(f) sati-
sfy the hypotheses of the lemma, and therefore can be taken
respectively as the vectors U(t), V({) of the lemma. But obviously,

G(1) — é(O):Zn. Hence, by (3), we must also have
?) F(i) — F0) =2n.

Since there is mno fixed point, there exists a circumference
C, © Z with center at z, so small that C, and f{C,) are contained
in different half-planes into which R? is separated by some
straight line. For { e [0, 1], let L(t) be the constant vector of lenght
1 in either of of the two directions on that straight line. Let the
line segment joining 2z to c(f) intersect C, at the point c¢({). Mo-
reover, as s varies from 0 to 1, let the point c(f, s) traverse the
line segment joining c(f) to c,(f) at a uniform rate so that c(, 0) =
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=c(?) and c(f, 1) = c,(f). This determines a deformation on Z of
C into C,.

For fixed s, the vector c(¢, s), flc(t, s)) = ®(t, s) is a continuous
vector with lenght F=0. Furthermore, it is clear that ¢(0, s)=
= ¢(1, s). Hence

(6) #(L, ) — D0, )= 2k(s)r,

where k(s) is an integer-valued function of s. Also, it is obvious
that &(f, 0) = F(t), so that by (5) we have

(7) &(T, 0) — B(0, 0)= 2.

Now, for s,, s,, te|0, 1], let Afs,, s,, {) be the smallest non—
negative angle formed by ®(f, s,) and P(f, s,). Since f is continuous
and leaves no point fixed, we infer that 4 is continuous, hence
uniformly continuous, in s,, s,, t. Therefore, given ¢ > 0, there
corresponds 3 > 0 such that if s, —s,| <3, then

!A(S,, Sy, t)—A(S” Sy t”<5-

Taking ¢ <<= and noting that A(s, s,, {)=0, we have A(s,, s,,
{) <=. Hence, in view of (6), Ulf)= ®(, s,), V()= PiE, s,) satisfy
the hypotheses of the lemma with « = =. Therefore, by (3).

q/’(\]-: 8,) — (];(67 8y = ‘5(\17 s,) —-6@, Ss);
from which we conclude that ®(1. s) — 117(?), s) is constant. From
(7), we see that the constant value is 2z, and hence, taking
s = 1, we have

(8) &1, 1) — @0, 1) =2x.

On the other hand, since C, and f(C,) are separated by a line
parallel to the constant vector L(f), the continuous vector ®({, 1) =
= c(¢, 1), f(cl?, 1)) never has the same direction as L({). Hence, in
view of (8) and the constantness of the vector Lit), the lemma
with « = 0 is applicable to the two continuous vectors ®({, 1) and
L(#), yielding

——~— — —~ —

o(1, 1) — 90, 1)= L{l) — L{0) =0,

which contradicts (8). Thus, f has at least one fixed point. and
the theorem is proved.



