Bollettino
 Unione Matematica Italiana

Smbat Abian

A proof and extension of Brouwer's fixed-point theorem for the closed 2-cell.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 16 (1961), n.3, p. 281-284.

Zanichelli
http://wWw.bdim.eu/item?id=BUMI_1961_3_16_3_281_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI \& UMI
http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Zanichelli, 1961.

A proof and extension of Brouwer's fixed point theorem for the closed 2-cell.

Nota di Smbat Abran (a Philadelphia, U.S.A.) (${ }^{*}$) (${ }^{\text {(})}$

Summary. - The main result in this paper is Corollary 3. according to which if a continuous map f of a closed \supseteq-cell E into Euclidean plane $R^{2} \supset E$ maps the boundary of E into E then f leaves at least one point fixed.

A proof is given here (${ }^{?}$) of the following extension of BrouWER's fixed point theorem for a closed circular disc. No use is made of the formal techniques of Topology. The results in this paper will later be extended and generalized in various ways.

Theorem. - Let Z be a closed circular disc with circumference C in a Euclidean plane R^{2} in which a positive sense for measurement of angles has been assigned, and f a continuous map of Z into R^{2} which leaves no point of C fixed. If there exists a point z inside C and a constant angle a such that for no point $\mathrm{c} \in \mathrm{C}$ is a an angle from the vector $\overline{\mathrm{c}, \mathrm{f}(\mathrm{c})}$ to the vector $\overline{\mathrm{z}, \mathrm{c}}$ then f leaves at least one point fixed.

It is clear that Broutwer's theorem for the closed 2-cell, which is equiralent to the assertion that a continuous map of Z into itself has a fixed point, is an easy consequence of the theorem. In fact, it is enough to take $\%=0$ and let z be any point inside C. Also, we note that in the above theorem, f does not necessarily map. Z into Z as it is required in the classical case.

Before proving the theorem, we state the following special cases.

[^0]Corollary 1. - Let Z be a closed circular disc in a Euclidean plane R^{2}, with center O and circumference C , and f a continuous map of Z into R^{2} which leaves no point of C fixed and such that
i) for no point $\mathrm{c} \in \mathrm{C}$ is the direction from c to $\mathrm{f}(\mathrm{c})$ the same as the direction from O to c;
or
ii) for no point $\mathrm{c} \in \mathrm{C}$ is the direction from c to $\mathrm{f}(\mathrm{c})$ the same as the direction from c to O .

Then f leaves at least one point fixed.
The corollary is obtained from the theorem by taking z at O and taking $\alpha=0$ in Case i) and $\alpha=\pi$ radians in Case $i i$.

An immediate consequence of Corollary 1 with hypothesis i) is

Corollary 2. - If a continuous map f of the closed circular disc Z into $\mathrm{R}^{2} \supset \mathrm{Z}$ maps the circumference C of Z into Z , then f leaves at least one point fixed.

By virtue of the Schoenflies theorem, modified to apply to a Jordan curve and its exterior, Corollary 2 implies the following result, which has weaker hypotheses than the classical Brouwer fixed point theorem.

Corollary 3. - If a continuous map f of a closed 2-cell Einto $\mathrm{R}^{2} \supset \mathrm{E}$ maps the boundary of E into E , then f leaves at least one point fixed.

Proof of the theorem. - In what follows, a given fixed directed axis X as initial direction is assumed for measurement of angles in R^{2}. Also, an angle and its radian measure will be denoted by the same symbol. The parameters t, s are real and range over the closed interval [0,1]. A continuous vector shall mean a continuous vector function of t in R^{2}. Continuous vectors are denoted here by $U(t), V(t), \Phi(t, s)$, etc.

Let $\mathrm{U}(t)$ be a continuous vector with length $|U(t)| \neq 0$. If $\widehat{U(t)}$ denotes an angle from the X direction to the direction of $U(t)$. such that $0 \leq \widehat{U(0)}<2 \pi$ and $\widehat{U(t)}$ is continuous, it is clear that $\widehat{U(t)}$ is thus uniquely determined, single-valued and continuous. The notation $\widehat{U(t)}$ will henceforth be used only when $|U(t)| \neq 0$, $U(t)$ is continuous, and with the stated conventions on continuty of $U(t)$ and value of $\widehat{U(0)}$.

Lemma. - Let a be a real constant and $\mathrm{U}(\mathrm{t}), \mathrm{V}(\mathrm{t})$ two continuous vectors, with $|\mathrm{U}(\mathrm{t})| \neq 0,|\nabla(\mathrm{t})| \neq 0$, such that

$$
\begin{equation*}
\widehat{U(1)}=\widehat{U(0)}+2 m \pi, \quad \widehat{V(1)}=\widehat{V(0)}+2 n \pi, \quad(m, n \text { integers }) \tag{1}
\end{equation*}
$$

and, for every integer k and every $\mathrm{t} \in[0,1]$,

$$
\begin{equation*}
\widehat{V(t)}-\widehat{U(t)} \neq \alpha+2 k \pi . \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\widehat{U(1)}-\widehat{U(0)}=\widehat{V(1)}-\widehat{V(0)} . \tag{3}
\end{equation*}
$$

Proof. - By (1)

$$
\begin{equation*}
\widehat{V(1)}-\widehat{U(1)}=\widehat{V(0)}-\widehat{U(0)}+2(n-m) \pi . \tag{4}
\end{equation*}
$$

Hence, if $m \neq n$, we see that

$$
\underset{t}{\operatorname{maximum}}[\widehat{V(t)}-\widehat{U(t)}]-\underset{t}{\operatorname{minimum}}[\hat{V}(\hat{t})-\widehat{U}(t)] \geq 2 \pi .
$$

Conseqcently, for some integer k and some t, the continuous function $\widehat{V(t)}$ - $\overline{U(t)}$ must assume the value $\alpha+2 k \pi$, contrary to $2)$. Therefore $\mathrm{m}=n$. and (4) implies (3).

Continuing with the proof of the theorem, suppose now that f leaves no point of Z fixed. As t varies from 0 to 1 , let the point $c(t)$ describe C once at a uniform rate in the positive sense. so that $c(0)=c(1)$. Then. from the hypotheses of the theorem we see easily that the two vectors $c(t), f(c(t)) \equiv F(t)$ and $z, c(t) \equiv G(t)$ satisfy the hypotheses of the lemma, and therefore can be taken respectively as the vectors $U(t), V(t)$ of the lemma. But obviously, $G(1)-G(0)=2 \pi$. Hence, by (3), we must also have

$$
\begin{equation*}
\widehat{F(1)}-\hat{F}(\widehat{0})=2 \pi . \tag{5}
\end{equation*}
$$

Since there is no fixed point, there exists a circumference $C_{1} \subset Z$ with center at z, so small that C_{1} and $f\left(C_{1}\right)$ are contained in different half-planes into which R^{2} is separated by some straight line. For $t \in[0,1]$, let $L(t)$ be the constant vector of lenght 1 in either of of the two directions on that straight line. Let the line segment joining z to $c(t)$ intersect C_{1} at the point $c_{1}(t)$. Moreover, as s varies from 0 to 1 , let the point $c(t, s)$ traverse the line segment joiuing $c(t)$ to $c_{1}(t)$ at a uniform rate so that $c(t, 0) \equiv$
$\equiv c(t)$ and $c(t, 1) \equiv c_{1}(t)$. This determines a deformation on Z of C into C_{1}.

For fixed s, the rector $\overline{c(t, s), f(c(t, s))} \equiv \Phi(t, s)$ is a continuous vector with lenght $\neq 0$. Furthermore, it is clear that $c(0, s)=$ $=c(1, s)$. Hence

$$
\begin{equation*}
\widehat{\Phi(1, s)}-\widehat{\Phi(0, s)}=2 k(s) \pi, \tag{6}
\end{equation*}
$$

where $k(s)$ is an integer-valued function of s. Also, it is obvious that $\Phi(t, 0) \equiv F(t)$, so that by (0) we have

$$
\begin{equation*}
\widehat{\Phi(1,} 0)-\widehat{\Phi(0,0)}=2 \pi \tag{7}
\end{equation*}
$$

Now, for $s_{1}, s_{2}, t \in[0,1]$, let $A\left(s_{1}, s_{2}, t\right)$ be the smallest nonnegative angle formed by $\Phi\left(t, s_{1}\right)$ and $\Phi\left(t, s_{2}\right)$. Since f is continuous and leaves no point fixed, we infer that A is continuous, hence uniformly continuous, in s_{1}, s_{2}, t. Therefore, given $\varepsilon=0$, there corresponds $\delta>0$ such that if,$s_{1}-s_{2} \mid<\delta$, then

$$
\left|A\left(s_{1}, s_{2}, t\right)-A\left(s_{1}, s_{1}, t\right)\right|<\varepsilon
$$

Taking $\varepsilon \leq \pi$ and noting that $A\left(s_{1}, s_{1}, t\right)=0$, we have $A\left(s_{1}, s_{2}\right.$, $t)<\pi$. Hence, in view of (6), U(t) $=\Phi\left(t, s_{1}\right), \quad V(t)=\Phi\left(t, s_{2}\right)$ satisfy ${ }^{-}$ the hypotheses of the lemma with $\alpha=\pi$. Therefore, by (3),

$$
\left.\left.\left.\left.\widehat{\Phi(1,}, s_{1}\right)-\widehat{\Phi(0,}, s_{1}\right)=\widehat{\Phi(1}, s_{2}\right)-\widehat{\Phi(0}, s_{2}\right)
$$

from which we conclude that $\Phi(1, s)-\widehat{\Phi(0}, s)$ is constant. From (7), we see that the constant value is 2π, and hence, taking $s=1$, we have

$$
\begin{equation*}
\widehat{\Phi(1,} 1)-\widehat{\Phi(0,1)}=2 \pi \tag{8}
\end{equation*}
$$

On the other hand, since C_{1} and $f\left(C_{1}\right)$ are separated by a line parallel to the constant vector $L(t)$, the continuous vector $\Phi(t, 1) \equiv$ $\equiv \overline{c(t, 1), ~} f(c(t, 1))$ never has the same direction as $L(t)$. Hence, in view of (8) and the constantness of the vector $L(t)$, the lemma with $\alpha=0$ is applicable to the two continuous vectors $\Phi(t, 1)$ and $\mathrm{L}(t)$, yielding

$$
\widehat{\Phi(1,1)}-\widehat{\Phi(0,1)}=\widehat{L(1)}-\widehat{L(0)}=0,
$$

which contradicts (8). Thus, f has at least one fixed point. and the theorem is proved.

[^0]: (') Pervenuta alla Segreteria dell' U. M. I. il 21 luglio 1961.
 (1) This paper was supported in part by National Science Foundation Grant G17904.
 (${ }^{2}$) The author wishes to thank Piofessor Arthur b. Brown of Queens College of the City University of New York for helpful discussions in counection with this paper.

