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A Note on Toeplitz Matrices and Unitary Equivalence.

Nota di C. R. PUT^AM (a Lafayette U. S.A.)

Summary. - There is obtained a généralisation of a condition assuring the
unitary équivalence of a Toeplitz matrix (CJ~K) to a certain function

oo
of the matrix belonging to the qua ratic form 2 S xnxn+i •

i

1. Introduction. Let \cn F, where n = 0, ± 1, ± 2, ..., be a
séquence of complex numbers satisfying

(1) c_M = cf, and 1 | cn | * < oo
i

and let /*(6) dénote the real function belonging to L2[ — TC, K] defined
by

00

(2) / (ô)^ 5 S cne iw6 .
—00

Let dpjjc (6) =r 2u—x sin jô sin fcödö, the differential of the spectral
00

matrix belonging to the quadratic form 2 2ixnxn+1 (cf. [7] and the

(*) This research was supported by the United States Air Force through
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Grovernment.



A NOTE ON TOEPLITZ MATRICES AND TJNITARY EQUIVALENCE 7

références to H U B E R T and HEI/LINGKER, citod there). I t was shown
in [7] that if, in addition to (1), it is assumed that the relations

(3) cu are real

and

(4) | cn | < const. a"(« = 0, 1, 2, ...), where 0 < a = Oonst. < 1,

hold, then

(5) T=UFU*,

where T and F are defined bv

(6) T = {c,-k) and F=

o

and Z7 is unitary.
In fact, it was shown loc. cit. that the unitary équivalence re-

lation (5) is true if (3) holds and if (4) is replaced by the weaker
hypothesis that

(7') meas | 6, /*(6) in Z| = 0 whenever meas Z~0

and

(7") S w | cn I < oo (or even S ( S cB+m
t)i/2 < oo).

(The condition (7') ajnounts to the assumption that F be absolutely
continuons. For the définition of absolute continuity used hère,
see [7], p. 840, also [3], p. 240, [9].) The proof of this theorem de-
pended upo ri certain f acts on cotnmutators obtained in [5] and
[6] and upon a resuit of HOSENBI/UM [8] concerning the unitary
équivalence of two absolutely continuous operators differing by a
trace class operator. A generalization of the theorem has recently
been obtained by BOSEĴ TBLUM [9] using résulta of KATO [3], [4].

That T and F need not be unitarily equivalent if (4) is assumed
but the reality assumption (3) is dropped is easily seen. For let
cx = — % c^1 = i and c„ = 0 otherwise ; then the spectrum of T is

the interval — 2 ^ ^ 2 (see [1], also below). But F= (2/sin 6dpJjfc(ö)),
o

from which it follows that the spectrum of F is the interval 0 < ;
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2. The Theo rem. In this paper there will be established, under
a relaxation of the restriction (3), an équivalence relation similar
to (5) but now existing between T and a matrix G closely related
to F. Instead of (3), it will be supposed that

(8) cn = atle
in9, a n l and cp real, a_n = an [n = 0,±ls± 2,...).

It is to be noted that an may be négative and henoe need not be
\cn\. (For the matrix T considered in the preceding paragraph,
ai = a_j = 1 and cp = — TC/2). There will be proved the following.

THEOEEM. - Let the séquence j cn \ satisfy (4) and (8). Then there
exists a unitary matrix U for which T — (c^_k) satisfies

(9 T= UGU*,

where
7T

(10) G = ( ( gWdg,^)) , g(Q) ~ S ane«* = a, + 2 ? o , cos «6.
V J f —oo

Moreover, the assertion remains true if the assumption (4) is repla-
eed by the weaker hypothesis of (7') and (7").

3. Proof of the Theorem. If the diagonal unitary matrix V
is defined by Y—diag (ei(?, eii(?, e3i9,...), a direct calculation and
the use of (8) show that VTV* = (aj-k). In view of (8) and the
implied relation flô) = (/(O -+- cp), it is clear that conditions (4), (7'),
and (7") imply, respectively, the corresponding relations in which
the cn and f(6) are replaced by an and |/(6). It now follows from
the theorem of [7] mentioned above that there exists a unitary
matrix W for which (aj-k)= WGW*9 where G is defined by (10).
Relation (9) with U = V*W now follows.

4. Some Special Cases. If a> = 0, so that cn = an (real) and
oo

ftô) = a0 -+- 2 }j an cosn 6 is even, the theorem mentioned earlier

results.
In casecp —TZJ2 and c2M = 0, one has Cg^—j^ —i( - l)"a2n—i and, hence,

00

the (restricted type of) odd function /(6) = 2 }j ( l)"a2M_1 sin (2» —1)6.
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Another special case results if ail cn = 0 except for n -= iV=J= 0.
Since cN can be expressed in its polar form cN — \ cN\ e1^ = \cN\ eiN^lN),
it is clear that (8) is a conséquence of (1). In this case (9) holds with

7T

G=:(j 2 \cN\ cos m dpj4(8)

Finally, it is seen that the Theorem is applicable when the c»
for n > 0 are the terms of a power series in z with real coefficients.
For, if z is inside the circle of convergence, it is seen. that the
c», where cn = bnz

n = bn \z\nein<? with c_B defined to be cn (n = 0,
1, 2,...), satisfy (4) and (8) with an = bn \s\n{= o_n).
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