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On the ratio f{¢ -+ cf~*(t))/f(%). (')

Nota di PriLiP HarTMAN (a Baltimore)

Summary. - The condition (1) £(t +- cf—2(t))/f(t) — 1 as t — oo, ils diffe-
rentiated form (2) £’(t):f1+a(t.) — 0 as t — oo and ils integrated form
v

(3) log (f(u)/f(v))/(1 +[f°'(s)ds) — 0 as w,v —oco frequently occur in the
) u

asymptotic integration theory of d*x/dt® = f(t)x = 0. The results proved
oo

imply that (3) and [ i*(t)dt =co are equivalent fo (1).

Limit relations of the type
(1) fit + cf~Z(ENfE) — 1 as ¢ — oo
or its “ differentiated’ form
() fi) frt>t)—~0 as ¢ — oo

or its “integrated” form

3) Lub | log(fle)/f(v)|/(1 +/f4 {s)ds) — 0 as u — oo
U< v <00 o

concern the “regularity of growth” of fif). They occur frequently
in the theory of the asymptotic integration of the differential
equations

4x) x" + fye=0.
For example, if f{f) is positive,
) fity > 0,

and continuous for ¢ >0, Wiman [8] has shown that (2), or even
(1), with « =1/2, implies that if x =x(})=|=0 is a solution of (41)
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and N(T) is the number of zeros of x(f) on 0 << ¢ << T, then
T

{6) wN(TiN[ﬂ/?(tjdt as T ~— oc.
0

(For a simple proof of (6) under the assumption (2) With « = 1/2,
sce [3], p. 642) Actually, when (5) holds, the relation (3) for « = 12
is necessary and sufficient for the validity of (6); cf. [6], p. 10. A
similar example concerns (4_): when (5) holds, (3) with « —=1/2
is necessary and sufficient for (4_) to have a pair of solutions
x = z+ satisfying

{7 i (f) ~ fri2(t) x(l) as £ — oo

This follows from [2] after the change of variables ds={f/2(¢)df in (4_).

Other examples of the occurrence of (1), (2) or (3) in connection
with (4+) can be found in [8], [1}, [4], [6] and [7], pp. 52-60.

The object of this note is fo prove a theorem concerning the
“equivalence” of (1) and its integrated form (3).

(*) Let f(t) be a positive conlinuous Junction for t = 0. Let m(t) be
a positive continuous function for t> 0 such that, for some non-
negative constants C and vy,

(3 [m(v)/mu)]= < Clvju)r for 0 <<u < v < oo.

Necessary and sufficient for

v

) Lub. | log fiw)/fiw)|/ (L + im(ﬂs))ds) —0 as u — oo
U v u-l

is that

{10) j mif(s))ds = oo

and that, uniformly on every bounded c-set,
1) fit+ em(fit))) Aif) — 1 as min (Lt + c/m(fiE))) — oo.

‘Note that there is no assumption of monotony on {(t) in (*).
Condition (8) holds (with C=1) if m(f) is continuously differentiable
and |m'(t/m(t)| < y/t; for example, if m(f) =i+

The proof of (*) is suggested by some arguments of [5] and of [6].

Proof of (¥). It will first be shown that (9) implies (10). Suppose.
if possible, that (9) holds but that (10) fails to hold. Then (9) im-
plies that lim log fit), as t — oo, exists as a (finite) number. Hence.
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lim f{¢), as £ — oo, exists and is a positive (finite)} number. Since
m(t) >0 for >0, it follows that (10) holds. This contradiction
proves (10).

It will now be shown that (11) holds uniformly on bounded
c-sets. Let . v > 0 and put

(12) h{u,v) = flu)/fiv)
and
(13) e(w,v) = | log h(u,v) | /(1 + | [ m(fishds ).

u

By virtue of (9),
14) e(u,v) — 0 as min (u,v) — oco.

Let p,g denote (arbitrary) points of the t-interval I — I,,, with
endpoints # and », such that

(1) {(p) = max fif) and flg) = min ((?).

1 I
Obviously.
{16) min (%,v) — co implies min (p,9) — oo.

Put H{u,v) = f(p)/f(@). so that

q
(17) log H{u.w) = ¢(p,g) (1 + | / mifis)d s | )
»

and
{18) | log hiu,v) | < log Hiu,v).

i

For a fixed v and ¢, let

(19) % = v + c/m{fiv)).

It is assumed that v, ¢ are sug'h that >0,
Since g —p < v —ul=|c|imlf(v),

q
| | mifshds|<1q—p| max mifis) < |c| max mifis))/miflv)),
p

where the max refers to the s-interval with endpoints p,q. By (3),
the factor of |{¢| is not greater than C max (fis)/flv))y << C HY (u,v).
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Consequently
4
/ mffishd s < Cicl HY (u,v).
p
It follows from (14), (16) and (17) that

log H{u,0)/(1 + C ¢ HY (u,0)) — 0 as min (u,v) — co.
(C‘onsequently, as min ’(u,'u) — o,
(20) either H(w,v) —'1 or Hu,v) — oo

uniformly on every bounded c-set, consistent with min (u,0)~—oco.
(For example. for the first alternative in (20), this means that if
:,M are given positive numbers, then there exists a number
T = T\.M) such that | H{u,v}) — 1] <Cc whenever v and ¢ are such
that ¢! <M and min (u,0) > T). When ¢=0, then f{p)={flg)=
= fiv) and Hiu,w) = 1." Consequently, the first alternative in (20)
holds uniformly on bounded c-sets, as min (%,0) — oco. In view of
(12) and (19), it follows from (18) that (11) holds uniformly on
bounded c-sets.

There remains to prove the converse implication, that is, that
(10) and the limit relation (11), uniformly on bounded c-sets,
imply (9). The assumption concerning (11) implies that, for ¢ > 0,
there exists a T. such that

(21 log (flw)/flv)) , <e if min (u,0)> T, and | u — v | < 1/mif(v)).

The assumption (10) implies that if v > 0. there exists a unique
positive number b — b(v) satisfying
v-+-b

(22) [m(f(s)) ds=1.

v
By the continuity of f(s) and of m(f), there is a number p such that
(23) bv) m(f(p)) =1 and v < p < v+ bv).

Applications of (21) to the two cases (u,v) = (u,p) and (u,v)= (v,p)
give
(24) | log (fiw)/fir)) | <2 if v > T and v <u < v+ b(v),
since  w —p| < bw) = 1mif(p), |v—p|<bl)=1mifip) and

min (u,p) = v, min {v,p) =v.
For a given ¢ > T, define a sequence of numbers gyt), g,(¢)...
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by placing q{ty =1t and if ¢,,..., gx—, have been defined, put
" gh = qx— + blgx—,)- Then ¢, > ¢»—,,

L

{25) lm(ﬂs)) ds=1 for k=1, 2, ...,
a4,

and

(26) | log (Aui/figr—)) | < 2e-if oy < < g

Clearly, (25) implies that ¢, — oo as k—oco. .
If >t then there is a unique positive. integer k such that
qi—y <u =< g,. Consequently,

un

| log (fw)fit)) | < 2 ke and 1+ / mif(s) ds =1+ (k — 1) =k.
t

Thus
log (flw)/fit)) |/ (1 + "m(f(s)ds).< 2 ifu>t>T..

t

This is equivalent to the. assertion (9). Hence (¥) is proved.
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