BOLLETTINO UNIONE MATEMATICA ITALIANA

LUCIEN GODEAUX

Sulle superficie algebriche di genere zero e di bigenere uno.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 13 (1958), n.4, p. 531–534.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1958_3_13_4_531_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Sulle superficie algebriche di genere zero e di bigenere uno.

Nota di Lucien Godeaux (a Liegi, Belgio)

Sunto. - In questa nota, vogliamo determinare le superficie algebriche di genere $p_a = p_g = 0$, $P_2 = 1$ con una curva bicanonica di ordine maggiore di zero.

Summary. - In the present note we are determining the algebraic surfaces of genera $p_a = p_q = 0$, $P_2 = 1$ with a bicanonal curve of order greater than zero.

1. Sia F una superficie algebrica di genere $p_a = p_g = 0$, $P_2 = 1$ e quindi $p^{(1)} = 1$. Supponiamo che l'unica curva bicanonica C_2 sia di ordine maggiore di zero. Questa curva è ellittica.

La curva tricanonica $C_3 = C_2$ non può contenere C_2 (ma può avere qualche parte comune con questa curva).

Le curve 6-canoniche $3C_2$ e $2C_3$ sono distinte e quindi si ha almeno un fascio di curve 6-canoniche C_6 .

Osserviamo che le curve pluricanoniche sono ellittiche e che quindi le curve 6-canoniche, che sono le aggiunte di una curva 5-canonica C_5 , non possono incontrare questa curva C_5 . Ma poichè vi sono ∞^1 curve C_6 , una di queste passa per un punto di C_5 . Quindi, questa curva C_6 e la curva C_5 hanno una parte comune.

Poniamo

$$\begin{split} C_{\mathbf{5}} &= \mathbf{f} + i_1 \boldsymbol{\omega}_1 + i_2 \boldsymbol{\omega}_2 + \ldots + i_t \boldsymbol{\omega}_t, \\ C_{\mathbf{6}} &= \boldsymbol{\delta} + k_1 \boldsymbol{\omega}_1 + k_2 \boldsymbol{\omega}_2 + \ldots + k_t \boldsymbol{\omega}_t, \end{split}$$

dove ω_1 , ω_2 , ..., ω_t sono curve comuni alle C_5 , C_6 e γ , δ curve che non hanno una parte comune.

Abbiamo

$$C_5' = C_6 = \gamma' + \Sigma i \omega = \delta + \Sigma k \omega,$$

dunque

$$\gamma' = \delta + \Sigma (k - i)\omega$$
.

Poi

$$C_6' = C_7 = C_5 + C_2 = \delta' + \Sigma k\omega = C_2 + \gamma + \Sigma i\omega,$$

e

$$\delta' = C_2 + \gamma - \Sigma(k-i)\omega.$$

Abbiamo dunque

$$\gamma' + \delta' = C_2 + \gamma + \delta$$
 o $C_2 = \gamma' - \gamma + \delta' - \delta$.

Ne deduciamo

$$C_3 = C_2' = \gamma'' - \gamma + \delta' - \delta = C_2 + \delta' - \delta,$$

$$C_3 = C_2' = \gamma' - \gamma + \delta'' - \delta = C_2 + \gamma' - \gamma.$$

2. Supponiamo dapprima che la curva $C_{\mathbf{z}}$ sia irriducibile.

La curva δ non può appartenere alla curva aggiunta δ'. Poniamo

$$\delta' = \delta_1 + \delta_2$$
, $\delta = C_2 + \delta_1$, $\gamma' = \gamma_1 + \gamma_2$, $\gamma = C_2 + \gamma_1$.

Sappiamo che le curve δ e γ non possono avere una parte comune, siamo dunque condotti ad un assurdo e la curva C_2 è quindi riducibile. Poniamo

$$C_2 = \Gamma_1 + \Gamma_2$$
, $\delta' = \delta_1 + \delta_2$, $\gamma = \gamma_1 + \gamma_2$, $\delta = \Gamma_1 + \delta_1$, $\gamma = \Gamma_2 + \gamma_1$.

Allora, abbiamo

$$C_3 = \Gamma_1 + \Gamma_2 + \delta_1 + \delta_2 - \Gamma_1 - \delta_1 = \Gamma_2 + \delta_2, \quad C_3 \equiv \Gamma_1 + \gamma_2.$$

Ne deduciamo

$$\delta' = \Gamma_1' + \delta_1 = \delta_1 + \delta_2, \quad \Gamma_1' = \delta_2,$$

$$\gamma' = \Gamma_2' + \gamma_1 = \gamma_1 + \gamma_2, \quad \Gamma_2' = \gamma_2.$$

Le curve $\Gamma_2 + \delta_2$, $\Gamma_1 + \gamma_2$ sono distinte, dunque abbiamo almeno un fascio di curve tricanoniche. Queste curve sono ellittiche e non possono appartenere ad una rete, poichè allora la superficie F sarebbe razionale o rigata (Castelnuovo). Le curve tricanoniche formano dunque un fascio $|C_3|$.

Abbiamo

$$C_4 = C_3' = \Gamma_2' + \delta_2 = \gamma_2 + \delta_{23}^{3} = 2(\Gamma_1 + \Gamma_2).$$

Tenuto conto che le curve γ_2 e $\hat{\gamma}_2$ non possono avere una parte comune, abbiamo:

1°)
$$\gamma_s = 2\Gamma_s$$
, $\delta_s = 2\Gamma_s$ oppure

2°)
$$\gamma_{\bullet} = 2\Gamma_{\bullet}$$
, $\delta_{\bullet} = 2\Gamma_{\bullet}$.

Nel primo caso, abbiamo

$$C_3 = \Gamma_1 + \Gamma_2 + \delta_1 + \delta_2 - (\Gamma_1 + \delta_1) = \Gamma_2 + \delta_2 = 2\Gamma_1 + \Gamma_2.$$

Ma allora

$$C_3 - C_2 = C_2' - C_2 = 2\Gamma_1 + \Gamma_2 - (\Gamma_1 + \Gamma_2) = \Gamma_1$$

e la curva Γ_1 sarebbe una curva canonica, ciò che è assurdo.

Invece, nel secondo caso, abbiamo

$$C_3 = \Gamma_1 + \Gamma_2 + \delta_1 + \delta_2 - (\Gamma_1 + \delta_1) = 3\Gamma_2,$$

 $C_3 = \Gamma_1 + \Gamma_2 + \gamma_1 + \gamma_2 - (\Gamma_2 + \gamma_1) = 3\Gamma_1.$

Quindi, abbiamo sulla superficie F un fascio $|C_3|$ di curve ellittiche e vi sono due curve Γ_1 , Γ_2 che, contate tre volte, danno curve del fascio. Le curve Γ_1 , Γ_2 sono ellittiche e non si incontrano.

3. Possiamo costruire agevolmente i sistemi pluricanonici della superficie F. Abbiamo

$$C_2 = \Gamma_1 + \Gamma_2$$
, $C_3 = 3\Gamma_1 = 3\Gamma_2$.

Ne deduciamo

$$\begin{split} C_4 &= \Gamma_1{}' + 2\Gamma_1 = 2(\Gamma_1 + \Gamma_2), \\ C_5 &= \Gamma_1{}' + \Gamma_1 + 2\Gamma_2 = \Gamma_1 + 4\Gamma_2 = 4\Gamma_1 + \Gamma_2, \\ C_6 &= 4\Gamma_1 + \Gamma_2{}' = 6\Gamma_1 = 3(\Gamma_1 + \Gamma_2) = 6\Gamma_2, \end{split}$$

dunque $P_2 = 1$, $P_3 = 2$, $P_4 = 1$, $P_5 = 2$, $P_6 = 3$.

In generale, abbiamo

$$\begin{split} C_{3i} &= 3i\Gamma_1 \equiv 3(i-1)\Gamma_1 + 3\Gamma_2 \equiv ... \,, \\ C_{3i+1} &= (3i-1)\Gamma_1 + 2\Gamma_2 \equiv ... \,, \\ C_{3i+2} &= (3i+1)\Gamma_1 + \Gamma_2 \equiv ... \,, \end{split}$$

e quindi $P_{3i} = 3i + 1$, $P_{3i+1} = 3i$, $P_{3i+2} = 3i + 1$.

4. Possiamo adesso dimostrare che la superficie F esiste (1).

Consideriamo nello spazio S_5 la varietà V_3 di Segre che rappresenta le coppie di punti di una retta e di un piano. Possiamo scrivere le equazioni di V_3 sotto la forma

$$\left| \begin{array}{ccc} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \end{array} \right| = 0.$$

La ipersuperficie V_4 di equazione

$$a_{11}x^3_{11} + a_{22}x^3_{22} + ... + a_{32}x^3_{32} = 0$$

taglia sopra V_3^3 una superficie Φ il cui sistema canonico è il fascio di cubiche ellittiche intersezioni della varietà V_4^3 cogli ∞^1 piani della varietà di Segre.

La omografia, dove s è una radice primitiva cubica dell'unità,

$$x'_{11}: x'_{12}: x'_{21}: x'_{22}: x'_{31}: x'_{32} = x_{11}: \varepsilon x_{12}: \varepsilon x_{21}: \varepsilon^2 x_{22}: \varepsilon^3 x_{31}: x_{32}$$

dà, sulla Φ, una involuzione del terzo ordine, senza punti uniti.

Abbiamo dimostrato che la superficie immagine di questa involuzione è precisamente una superficie F. Γ_1 , Γ_2 corrispondono alle curve canoniche di Φ tagliate dai piani

$$x_{11} = x_{21} = x_{31} = 0$$
 e $x_{12} = x_{22} = x_{32} = 0$.

(4) L. Godeaux, Sur une surface algébrique non rationnelle de genres arithmétique et géométrique nuls, et de genre linéaire un, « Bulletin de la Société roy. des Sciences de Liège », 1934, pp. 184-187).