BOLLETTINO UNIONE MATEMATICA ITALIANA

BELLINO ANTONIO ROSINA

Sui multilateri sghembi connessi in relazione alla classificazione delle curve algebriche sghembe.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 13 (1958), n.4, p. 525–530.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1958_3_13_4_525_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Sui multilateri sghembi connessi in relazione alla classificazione delle curve algebriche sghembe.

Nota di Bellino Antonio Rosina (a Ferrara)

Sunto. - È contenuto nel n. 1.

Summary. - Contained in n. 1.

1. Mentre Halphen (¹) e Noether (²) per la classificazione delle curve algebriche sghembe prive di singolarità si sono serviti delle superficie di ordine minimo aventi per intersezione (totale o parziale) le curve delle varie famiglie, Severi (³), in una serie di ricerche fondamentali, ha ripreso il problema e lo ha trattato da un altro punto di vista basandosi sulla considerazione delle curve spezzate (in particolare multilateri) in esse contenute.

Può avere allora particolare interesse, stabilire quali e quanti siano i multilateri sghembi di dato ordine e genere, non isomorfi (4), e verificare, caso per caso, se ognuno di essi sia, o no, contenuto in una famiglia di curve irriducibili dello stesso ordine e genere.

Nella presente Nota metto appunto in rilievo, in primo luogo, il metodo dato ed il procedimento seguito onde ottenere, per ogni ordine e genere, tutti i tipi possibili di multilateri sghembi con n+p-1 vertici di connessione e il cui genere sia minore od uguale al genere massimo delle curve algebriche sghembe dello stesso ordine, dando i risultati per $n \le 7$.

In secondo luogo, adoperando opportunamente il metodo di « piccola variazione » determino per i valori di $n \le 7$ quei multilateri che sono limite di curve algebriche sghembe irriducibili dello stesso ordine e genere.

- (1) G. Halphen, Mémoire sur la classification des courbes gauches algébriques, « Journal de l'École Polytechnique », t. 52, 1882, pp. 1-200.
- (2) M. NOETHER, a) Zur Grundlegung der Theorie der algebraischen Raumkurven, «Abhand. Akad. d. Wissenschaften zu Berlin» 1882; b) Journal für die reine und ang. Math. Bd. 83, 1882.
- (3) F. Severi, a) Vorlesungen über algebraische Geometrie, Berlin 1921 b) Sulla classificazione delle curve algebriche e sul teorema di esistenza di Riemann, «Rend. Acc. Lincei», Serie 5, Roma, 1915.
- (4) Chiamando, con Severi, isomorfi due n-lateri che hanno lo stesso schema di connessione ossia tali che si possa porre fra i loro lati una corrispondenza biunivoca in modo che a due lati incidenti dell'uno corrispondano due lati incidenti dell'altro, e viceversa, v. F. Severi, loc. cit. (3) in b) a p. 1016.

2. Indicati con α_i , α_2 ,..., α_n i vari lati del multilatero, con $(\alpha_r\alpha_s)$, (r, s=1, 2,..., n) i suoi vertici (di connessione) e con $x_i(i=1, 2,..., n)$ il numero dei vertici del multilatero che stanno sul lato α_i , sussiste la relazione

(1)
$$x_1 + x_2 + \dots + x_n = 2n + 2p - 2$$

che considerata come equazione indeterminata (5) nelle variabili $x_1, x_2, ..., x_n$, si risolverà per valori interi e positivi, tenendo presente che $1 \le x_i \le n-1$ (i=1, 2, ..., n).

Fra le soluzioni aritmetiche della (1), come facilmente si può verificare caso per caso, alcune non corrispondono a possibilità geometriche e vanno scartate, alle rimanenti corrispondono invece effettivi multilateri di ordine n e genere p con n+p-1 vertici di connessione.

Resta così un certo numero di gruppi di valori per $x_1, x_2, ...$..., x_n , gruppi che corrispondono a tutti i possibili multilateri sghembi d'ordine n e genere p esistenti, con n+p-1 vertici di connessione.

I multilateri appartenenti ad uno stesso gruppo di valori $[x_1, x_2, ..., x_n]$ diremo che hanno lo stesso schema di distribuzione dei vertici, mentre lo schema di connessione dei vertici ha, si intende, il significato consueto (6).

3. Per individuare tutti i multilateri sghembi di ordine n e genere p che appartengono ai vari schemi di distribuzione, possiamo procedere nel modo seguente.

Notiamo anzitutto che esistendo un sol tipo di multilateri di ordine 2 [ovviamente di genere zero e che indicheremo con L_2^0 , (7)] basterà aggiungere ad esso una sua qualunque unisecante (8) e si darà così origine all'unico tipo esistente di trilateri sghembi L_3^0 .

È altresì ovvio che aggiungendo ad un trilatero sgembo una sua opportuna bisecante si dà origine ad un quadrilatero L_4^1 ed aggiungendovi una opportuna unisecante si dà origine ad un quadrilatero L_4^0 , esaurendo così la ricerca dei quadrilateri.

I cinquelateri sghembi, come è noto, possono essere di genere 2, di genere 1 oppure di genere zero (tenendo presente che ci

⁽⁵⁾ v. M. PIAZZOLLA BELOCH, Sui multilateri sghembi connessi, «Rend. Acc. Naz. Lincei, Vol. XII, serie 6, Roma, 1930.

⁽⁶⁾ v. loc. cit. (3) in b).

⁽⁷⁾ Indicando con L_n^p un multilatero di ordine n e genere p.

⁽⁸⁾ Ritenendo per y-secante di un multilatero una retta che si appoggi ad y suoi lati, in punti che non siano comuni a due di essi.

siamo proposti di considerare solo i multilateri aventi genere massimo eguale a quello delle curve algebriche sghembe dello stesso ordine).

Determineremo, in primo luogo, tutti i tipi di cinquelateri sghembi di genere 2 aggiungendo ad un quadrilatero, il cui genere indichiamo con x, quella opportuna y-secante s_y onde ottenere un multilatero L_5^2 . Dovrà aversi:

$$L_{\bf 4}{}^x + s_y = L_{\bf 5}{}^2$$

dove x potrà assumere i valori uno o zero ed è inoltre $1 \le y \le 3$. Tenendo ora presente la formula che fornisce il genere di una curva connessa spezzata si trova l'equazione indeterminata

$$x + y = 3$$

che risolveremo per interi e positivi, tenendo presenti le limitazioni più sopra poste, ottenendo così le soluzioni x=0, y=3; x=1, y=2. Tutti i cinquelateri L_5^2 esistenti si trovano dunque aggiungendo una trisecante ad un L_4^0 , e una bisecante ad un L_4^1 .

Analogamente si procederà per ottenere i cinquelateri di genere uno e di genere zero.

4. In generale supposto dati tutti i multilateri sghembi di ordine n-1 per i quali il genere varia fra 0 e $\frac{(n-3)^2}{4}$ se n-1 è pari e fra 0 e $\frac{(n-2)(n-4)}{4}$ se n-1 è dispari, si tratta di determinare il genere di quei multilateri per i quali con l'aggiunta di una opportuna y-secante si ottiene un multilatero di ordine n e genere p assegnati.

Indicando allora con x il genere, da determinarsi, del multilatero di ordine n-1 e con s_y la plurisecante da adoperare, si dovrà avere:

$$(2) L^{x}_{n-1} + s_{y} = L_{n}^{p}$$

dove n e p sono prefissati.

Tenendo poi presente la nota formula che dà il genere di una curva connessa spezzata, segue la seguente equazione indeterminata nelle variabili $x \in y$:

$$(3) x + y = p + 1$$

dove x ha la limitazione suddetta, y è un intero qualsiasi compreso fra 1 ed n-2 e p è un intero dato compreso fra 0 e $\frac{(n-2)^2}{4}$ se n è pari e fra 0 ed $\frac{(n-1)(n-3)}{4}$ se n è dispari.

Risolvendo la (3) e discutendo, caso per caso, le soluzioni ottenute e, scartate quelle che non presentano possibilità geometrica, si potranno determinare effettivamente tutti i multilateri sghembi, esistenti e tra loro non isomorfi, di ordine n e genere p assegnati con n+p-1 vertici di connessione. Essi si inquadrano necessariamente nei vari schemi di distribuzione di cui al n. 2 poichè. come abbiamo visto, tutti i multilateri di ordine n e genere p sono ivi compresi. Con ciò si ottiene anche un' utile verifica dei risultati conseguiti.

5. Costruiti così tutti i multilateri non isomorfi di un dato ordine e genere e condotte per ognuno di essi le superficie di ordine minimo di cui sono intersezioni parziali o totali, applicando come sopra già accennato, in modo opportuno il metodo di « piccola variazione », si possono determinare quelli che con tale metodo si ottengono come casi limite di curve algebriche sghembe irriducibili dello stesso ordine e genere, e individuare le eventuali eccezioni. Ho eseguito al riguardo calcoli e costruzioni fino al settimo ordine incluso. Lo stesso metodo potrà applicarsi per gli ordini successivi $n=8,\ n=9.\dots$ proseguendo fino ad un ordine n alto quanto si vuole.

In un successivo lavoro pubblicherò dettagliatamente i risultati ottenuti, limitandomi in questa Nota a trattare, a titolo di esempio, il caso $n=7,\ p=6.$

6. Supponiamo di avere a disposizione tutti i multilateri sghembi di ordine 6 e genere p (= 4, 3, 2, 1, 0) (precedentemente determinati) con 5 + p vertici di connessione e procediamo alla costruzione di tutti i multilateri di ordine 7 e genere 6.

Dalla (1), posto n = 7, p = 6 si trae:

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 = 24$$

dove
$$1 < x_i < 6 \ (i = 1, 2, 3, ..., 7)$$
.

Risolvendo per interi (e positivi) e tenendo conto soltanto di quelle soluzioni aritmetiche che ammettono possibilità geometrica, segue che i soli multilateri possibili di ordine 7 e genere 6 con 12 vertici di connessione sono quelli che hanno i vertici soddisfacenti ai seguenti schemi di distribuzione:

I)	[6, 4, 4, 4, 4, 1, 1]
II)	[6, 3, 3, 3, 3, 3, 3]
III)	[5, 5, 4, 4, 4, 1, 1]
IV)	[5, 4, 4, 4, 4, 2, 1]
\mathbf{V})	[4, 4, 4, 3, 3, 3, 3].

Per determinare poi effettivamente i multilateri cercati, indichiamo con L_6^x un multilatero di ordine 6 e genere x ($0 \le x \le 4$), supposto precedentemente trovato, e con s_y quella opportuna y-secante da aggiungere ad L_6^x onde ottenere un settelatero di genere 6. Si avrà allora:

$$L_{6}^{x} + s_{y} = L_{7}^{6}$$

da cui, applicando la (3):

mente.

$$x + y = 7$$

dove x, y sono numeri interi e positivi sottoposti alle limitazioni $0 \le x \le 4$, $1 \le y \le 6$.

Risolta la precedente equazione indeterminata si hanno ovviamente le due sole soluzioni x = 3, y = 4; x = 4, y = 3.

Segue allora che tutti i settelateri di genere 6 e con 12 vertici di connessione si ottengono aggiungendo una quadrisecante ad un seilatero di genere 3, e una trisecante ad un seilatero di genere 4.

Così operando si ottengono tutti i possibili settelateri di genere massimo e per essi gli schemi di connessione sono i seguenti:

- 1) $(\alpha_1\alpha_2)$, $(\alpha_1\alpha_3)$, $(\alpha_1\alpha_4)$, $(\alpha_1\alpha_5)$, $(\alpha_1\alpha_6)$, $(\alpha_1\alpha_7)$, $(\alpha_2\alpha_3)$, $(\alpha_2\alpha_4)$, $(\alpha_2\alpha_5)$, $(\alpha_3\alpha_4)$, $(\alpha_3\alpha_5)$, $(\alpha_4\alpha_5)$,
- 2) $(\alpha_1\alpha_2), (\alpha_1\alpha_3), (\alpha_1\alpha_4), (\alpha_2\alpha_3), (\alpha_2\alpha_4), (\alpha_3\alpha_4), (\alpha_1\alpha_5), (\alpha_1\alpha_6), (\alpha_1\alpha_7), (\alpha_5\alpha_6), (\alpha_5\alpha_7), (\alpha_6\alpha_7),$
- \mathfrak{Z}_{1} $(\alpha_{1}\alpha_{2}), (\alpha_{4}\alpha_{3}), (\alpha_{4}\alpha_{4}), (\alpha_{4}\alpha_{5}), (\alpha_{2}\alpha_{3}), (\alpha_{2}\alpha_{4}), (\alpha_{2}\alpha_{5}), (\alpha_{3}\alpha_{4}), (\alpha_{3}\alpha_{5}), (\alpha_{4}\alpha_{5}), (\alpha_{4}\alpha_{6}), (\alpha_{9}\alpha_{7}),$
- 4) $(\alpha_1\alpha_2), (\alpha_1\alpha_3), (\alpha_1\alpha_4), (\alpha_1\alpha_5), (\alpha_2\alpha_3), (\alpha_2\alpha_4), (\alpha_2\alpha_5), (\alpha_3\alpha_4), (\alpha_3\alpha_5), (\alpha_4\alpha_5), (\alpha_1\alpha_6), (\alpha_6\alpha_7),$
- 5) $(\alpha_1\alpha_4), (\alpha_1\alpha_5), (\alpha_1\alpha_6), (\alpha_1\alpha_7), (\alpha_2\alpha_4), (\alpha_2\alpha_5), (\alpha_2\alpha_6), (\alpha_2\alpha_7), (\alpha_3\alpha_4), (\alpha_3\alpha_5), (\alpha_3\alpha_6), (\alpha_3\alpha_7),$
- 6) $(\alpha_1\alpha_3), (\alpha_1\alpha_4), (\alpha_1\alpha_5), (\alpha_2\alpha_3), (\alpha_2\alpha_4), (\alpha_2\alpha_6), (\alpha_2\alpha_7), (\alpha_4\alpha_5), (\alpha_5\alpha_6), (\alpha_3\alpha_6), (\alpha_3\alpha_7), (\alpha_6\alpha_7)$ e non ne possono esistere altri ad essi non isomorfi.

È evidente che questi multilateri con i loro vertici soddisfano agli schemi di distribuzione I), II), III), IV), V) e V), rispettiva-

È altresì facile verificare che soltanto il settelatero di schema di connessione 5) sta sopra una (e una sola) quadrica irriducibile, i settelateri di schemi 2), 4) e 6) stanno invece su quadriche spezzate ed i settelateri di schemi di connessione 1) e 3) non possono stare su quadriche nè irriducibili nè spezzate.

7. Ricordando che le curve di ordine 7 e genere 6, in quanto curve di genere massimo devono stare su quadriche, e osservando che i settelateri di schemi 1) e 3), come si è notato al n. precedente,

non soddisfano a questa condizione, si vede che essi non possono essere casi limite di curve irriducibili dello stesso ordine e genere 9).

8. Procedendo con i settelateri rimanenti all'operazione di «piccola variazione» si trova che per i settelateri di schemi 2) e 4) tale operazione, comunque eseguita, non conduce mai ad una curva irriducibile, bensì ad una curva spezzata, di cui fanno parte uno o più lati del multilatero di partenza, quindi detti multilateri non si ottengono come limite di curve irriducibili dello stesso ordine e genere.

I settelateri di schemi 5) e 6) invece, per «piccola variazione» danno luogo a curve sghembe irriducibili dello stesso ordine e genere dei settelateri e si ottengono come intersezioni di quadriche con superficie del quarto ordine. Queste curve appartengono alla stessa famiglia C_7 ⁶[2, 4] della classificazione di Halphen e Noether e come caso limite hanno, rispettivamente, i settelateri 5) e 6).

Partendo per es. dal settelatero L_7^6 avente lo schema di connessione 5), siano F_2 e Φ_4 due superficie di ordine minimo passanti per esso (del secondo e del quarto ordine rispettivamente), segantisi oltre che in L_7^6 in una retta k residua e presa una superficie del quarto ordine Ψ_4 passante per k, superficie che possiamo supporre irriducibile, la superficie del fascio.

$$\Phi_4 + \lambda \Psi_4 = 0$$

che si ottiene per λ sufficientemente piccola, sega la quadrica F_{\star} secondo la retta k e una curva sghemba C_{7}^{6} irriducibile, prossima a L_{7}^{6} , curva che ha come caso limite, per $\lambda=0$, il multilatero di partenza.

9. Possiamo concludere che la famiglia delle curve del settimo ordine e genere massimo $C_7^6[2, 4]$ è caratterizzata dai multilateri di schemi di connessione 5) e 6) e da questi soli 10).

Analogamente, per ogni famiglia e sottofamiglia di curve della classificazione di Halphen e Noether ho determinato col metodo esposto, per gli ordini $n \leq 7$, i multilateri che le caratterizzano.

- (9) Fra essi quello di schema 3) è stato segnalato da F. Severi, v. loc. cit. (3)
- (10) Ciò concorda con M. PIAZZOLLA BELOCH (Multilateri sghembi e curve di genere massimo, Rend. Circolo Mat. di Palermo, T. LV, 1931).