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On the Solution of the Differential Equation

m y> ya\ - > tn)) = o.
Nota di SMBAT ABIAK e di ARTHUR B. BROWN (a Flushing, N. T.)

Snnto. - Si indica un procedimento per applicare il metodo delle appros*
simazioni successive alla solu&ione di una equazione implicita differen-
ziale ordinaria d'ordine n, senza risolverla espïicitamente rispetto alla
derivata n-esima. Sono date valutazioni dell'errore sul resto della
approssimazione m-esima

Summary. - A procedure is given for applying the method of successive
approximations to the solution of an implicit nth order ordinary differen-
tial équation, without solving explicitly for the nth derivative. Appraisals
of the remainder error of the mt/l approximation are given.

In this paper a procedure is given for applying the method of
successive approximations to the solution of a differential équation
of the type f{x, y, y(i\ ..., y{n)) = 0, without solving it explicitly
for y{n). In Theorem 1 below we state the existence and uniqueness
of the solution under hypotheses weaker than those usually
imposed. The statement of the theorem includes an outline of the
procedure for constructing the solution. In Theorem 2 four apprai-
sals of the remainder error of the mth approximation are given;
two in terms of the original data, and two in terms of the mth
and (wi — ~\)st approximating functions. The latter two appraisals
are valid regardless of errors in computation through the (m — ï)st
approximating function.

The results obtained in this paper generalize and extend those
obtained by the authors for the case n—l.

In what follows, unless otherwise stated, the index i runs from
dHy)

0 to w - 1, the index j runs from 1 to n, ym{x) === y(x), y(p ^ ~J~i

and (x, (ï/), e) = fac, i/0, ..., yu-l} z).

THEORBM 1. - Let f(x, yQ, ..., yn—x, z) = t(&, {y), &) be a continuous
real-valued function defined on the closed région NczE"+* deter-
mined by the relations
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where H, Ht and hn are n H- 2 positive constants, aud let there
be n -H 2 non-negative constants Mi9 Z)l and D2, with Dl > 0 and
Dj > 0, sach that, for points belonging to JV",

(1) | ftc, (y), 0) - A«, ("1), «) I ̂  S « i | yt - -rH l,

(2) | f(a, (b), c) I < h„D,,

and, if z =t=Ç,

(3) D ^ Ö Ï L J M L ^ P L M J ) ^ ^ .

Then there exists n-t- 1 positive constants h<^H and 7̂  ̂  fl^

such that the differential équation

xi y> y ; ••• s y ) — u

has a unique solution 7/ = Y(x) in the interval | x — a \ ̂  h. with
• y<̂ »(a) = bi9\ Y(i)(x) — bt | ̂  ^ and | Y<tt>(x) - c | ̂  feM .

Furthermore, 7fc and ^ t can be chosen so that if we let k be
any constant satisfying

(4) 0 < k[hnD, + | ƒ{«, (6), c) | ] < 2fc*,

and if for (as, (^}. z)ÇiN we define

(5) .F(x, (2/), z)^z-kf(x, [y), z\

then for m = 1, 2, ... and r = 0, 1, ... , w, the function Tm(x; r) is
well defined and continuous on | x — a \ <Lh, where Ym(x; r) is
determined as follows.

Let Y^x; n) be any function continuous on \x — a|<^&, aud
satisfying

(6) IT.fonJ-cl^*,.,
and

X

(7) YJx ;n-j)= b„_s + ƒ YJt ;n-j + l)dt,
a

(8) Tm+1{x-, n) = F[x, Ym(x; 0), Ym(x; 1),..., YJa;; n)].



ON THE SOLUTION OF THE DIFFERENT TAL EQUATION, ECO. 385

Furthermore, if we define

(9) YJx) = YJx ; 0), | x - a | ̂  h,

tîien

(10) Y(x) = lim YJx), \x — a\^Lh.
m •—*- oo

Before beginning the proof we observe that it is clear that
the hypotheses are easily satisfied for a given point (a, (6), c) if
f(x, (y), z) is of class c(1) in a neighborhood of (a, (b), c), and

-^ (a, (&), c) > 0. If - (a, (6), c) < 0, or in gênerai if (3) is satisfied

with Bx and Z)2 both négative, we can obtain a condition of the
form (3) by changing the sign of f.

We shall prove the theorem with the help of the followiiig
five lemmas.

LEMMA. 1. - Let

(11) B = max ( | 1 - hDt |, \l — kDl\), and Ax = kMz.

Then

(12) 0<ZB<l,

(13) ( l - ^ ^ - f c l A a , (6), c)|>0,

and, for points belonging to N,

(14) \F(x, (y), g)-F(x, (/)), ï>)\^Al\yl-^\ + B\s-ï,\.

PROOF. - Since D2 >> 0, we see from (4) that 0 <; kDt < 2. From
(3) we see that D^D2, Since jDt > 0, it follows that both 1 — kD2

and 1 — kDl are less than 1 in absolute value. Hence B, as defined
in (11), satisfies (12).

To prove (13), we first note that, since Dl<^Dt, the only pos-
sible values for B are 1 — kDx and M)2 — 1. If B = l — kD,, (13)
follows from (2). If B = ftJD, — 1, (13) follows from (4). We turn
now to the proof of (14).

For points belonging to N9 if s=}=^ then, since fc> 0, we infer
from (3) that

(15) i-^i-jl^zpL^!.^.
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Obviously,

(16) F{x, (y) z) - F(x, fo), Ç) = F(x, (y), 0) - F(x, (-/)), s) +

•+• F(x, \n),e) — F(x, (y)), Q,

which, by (5),

= | - fc[fl*, (y), 0) - fl8, fo), 0)]| +

-4- |(0 - Ç) - *[flas, (-o), Z) - flx, (•/!), Ç)]|.

Relation (14), inoluding the case z = t, is now seen to follo^w from
(16), (1), (11) and (15). This complètes the proof of Lemma 1.

LEMMA 2. - There exist n H- 1 positive constants h <^_ H and
h{ <I Hi such that

(18)

(19) '

and

(20)

h(\c\

r « ( | c

F(x,

- fo„)^ fen_,, i = 2, 3 , . . . , Wj

*)-c\<hn

for erery point of the closed région N' ClN defined by

(21) \x — a

PROOF. - From (13) and the continuity of F{x, (y), z) we infer
that positive constants h<^H and hi^Ht exist such that, for
| x — a | < h and | y(• — Z>t | ̂  fe(,

(22) | J(x, (2/), c) - F(a, (b), c) | ̂  (1 - B)7in - fc I /*(a, (6), c) |.

It is clear from (12) that h can be decreased in value so that (17),
(18) and (19) are satisfied, and that (22) will remain valid. Further,
if (x, (y), &) satisfies (21), from the obvious inequality

x, (y)e)-c\^\ I\x, (y), B) - F(x, (y)} c) | -H

I F(xy (y), c) - F(a, (b), c) \ + | F(a, (b), c) - c |,
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and from (14), (21), (22) and (5), we infer that

\F(x, (y), z)-c\^Bhn + (l-B)hn = hn.

Hence (20) is satisfied, and Lemma 2 is proved.

LEMMA 3. - If U{x) and V(x) are of class C(n) on | x — a | <L h,

with

— c\<Lhn,

(23) U<'<

(24) y°

then

°(a) = 6«,

(25) \F[x, V(x), V^ix), ..., V^(x)] — F[x9 U(x),

PROOF. - In view of (23) and (24) the arguments of F in (25)
are coordinates of points belonging to N' d N* Hence Tve may
applj Lenama 1, and from (14) we infer that

(26) | F[x9 V(x),..., V<«>(x)] - F[x, U{x),..., U^(x)] \

^ ) - Z7ff)(a;) | ] -+- jB[max | V™(t) — Uin\t) \ ].
i t € [a, J ]

Since by (23) and (24) V(i\d) = Uu\a) we have, obviously,

application of which with i successively equal to M- — 1, n — 2,...
..., 1, 0, in view of (26) and the fact that [max | V{i)(t) — ü^(t) \ ]

t ( [a, ce]

is a monotone non-decreasing function of | x — a |, yields (25).
Hence Lemma 3 is valid.

LEMMA 4. - Let Z7( x ; n ) be a continuous function on
with

(27) | U{x] n ) - c | < f e ( I ,



3 8 8 SMIÎAT ABIAN E ARTHUR B BROWK"

and let us define, for \x — a \ < h,

(28) U(x; n - j) = &M_; +Ju(t;n-j+ l)dt,
a

and

(29) U(x)= U{x; 0).

Then U{x) is of class Cm with

(30) U^(x)^U(x;j)

and U(x) satisfies (23) for \x — a \ < h.

PROOF. - From (28). by differentiation Avith respect to x, we
find U'(x; i):= U(x; i -h l ) and hence, in view of (29), relation (30)
is satisfied and consequently U(x) is of class C(n> and U{x; n—j)
is of class C(?).

The next step in the proof of Lemma 4 is to show that

(31) | U(x; i)-bt\^hl9 \x-a\^h.

By (27) and (28) we have

(32) | U(x; n - 1) - bn_x | ^ | x - a | ( | c | + hH),

which by (18) yields (31) for i = n — 1.
From (32) we have

| U[x; n - 1) | ̂  | bn^ \ + \ x - a \ ( \ e \ + hn),

and hence} using (28) with j = 2, we obtain

œ

ü(x; n - 2 ) - 6B_21 ̂  I ƒ [ I &,.-, \ + \ t - a \ ( \ c \ + K)]dt | =

From (19) with j — 2 we now infer that (81) is true for i = n — 2.
It is easy to show, in similar fashion, for j = 3,..., n, and for
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\x — a | <̂  h, that

! U(x; n j) - 6„_, | <!1 &B_,+, | ̂ = ^ " + ' - ^ = ^ (|'c I + K),

and from (19) we infer that^(31) is true for i = n — 3, n — 2,... ,
. ., 1, 0. This complètes the proof of (31).

Relations (23) are now seen to follow from (28), (29), (30), (31)
and (27). Hence Lemma 4 is proved.

LEMMA 5. - Let U(x) satisfy the hypotheses of Lemma 4 and
let us define, for | x — a \ ̂  h,

(33) V(x; n) = F(x, U(x)

(34) V(x;n- j) = 6„_, + J V(t; n-j + l)dt,
a

and

(35) V{x)= V(x] 0).

Then V(x) satisfies the hypotheses of Lemma 4, U(x) and V(x)
satisfy the hipotheses of Lemma 3, and

(36) VW(x)=V(x;j).

Farthermore, if W(x) is defined in terms of V(x) in exactly
the same way in which V(x) is defined (in this lemma) in terms
of £7(05), then for | x — a | < h

(37) mai | W^\t) — Vln){t) | ^

^ [P0(x ~ «)][ mai |
t e [a, cc]

where

(38) P0(t) = B-

PROOF. - Since, by Lemma 4, U(x) satisfies (23), we see from
(33) and (20) that, for | x — a | <; h, \ V(x; n) — c\<Lhn. Hence
V(o5; n) satisfies the same hypotheses as U(x; n) of Lemma 4. On
comparing (34), (35) with (28), (29), we see that V{x) is defined in
terms of V(x; n) in the same way in which ü(x) is defined in
terms of U(x; n). Hence the conclusion of Lemma 4 can be ap-
plied to V(x\ and we infer from (30) that (36) is satisfied, and
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from Lemma 4 that U(x) and V(x) satisfy the hypoteses of Lemma
3. It remains to prove (37).

From (36) with j = n and from (33) we have

(39) V<">(») = F[x, U(x), Z7">(«), ..., U™(x)\

We then infer from the hypothesis on W that

(40) Win)(x) ^ F[x, V(x), V(l)(x), ..., Y(M)(^)].

Since U(x) and Y(as) satisfy the hipotheses of Lemma 3, we infer
from that lemma and from (39), (40) and (38) that

(41) [ WlnHx) — Vin)(x) | <; [P0{x - a)][ max | V{*\t) - ü{n\t) \ \
t i [a, x\

Since the right member of (41) is a monotone non-decreasing
function of \ x — a\9 we infer the truth of (37), and Lemma 5 is
proved.

Now returning to the theorem, if we compare (6) with (27),
(7) f or m = 1 with (28), and (9) for m = 1 with (29), we see by
(30) that

and hence (8) with m = l shows that U(x) = Y^x), Yi(x) =. Yi(x)J

satisfy (33). In similar fashion, we can obtain easily that U(x) =
= Yx{x\ Y{x) = Yt(x\ W(x) — Y3(x) satisfy the hypotheses of Lemma
5, and, by mathematical induction, that for m ^ 1, TJ[x) = Ym(x)9

V(x) = ym+1(a5), W(x) =z Ym+.t(x) satisfy the hypotheses of Lemma 5,
hence of lemma 4. Therefore

and U(x) = YJx) satisfies (23), that is,

(43) Y m
w ( o ) = bn I YJ*>{x) - b t \ ^ h t , | Yw™(x) - c | ̂ h n ;

and in addition we infer from (41), for ] x — a \ <C h and r ^ 2, that

(44) [ |
te [»,»]

Let

I / I «—»+,ƒ

(45) -FA1) — -° "n—*"" -" **-i { ; =77 î
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so that, in view of (38), for j = 0, 1, ..., n — 1,

(46)

In view of the equalities in (43) and the fact that the right
member of (44) is a monotone nön-decreasing function of | x — a \ ,
we obtain from (44) and (46) by intégration, with j successively
equal to 1, 2, ..., n, for m > 2 , with r = m,

(47) [ max | Y%7{\t) - Y(2~j\t) | ] <1

tç [a, s

From (44),

[max^

max |

From (38) and (17) we see that

(48)

GO >n^ *n*

Hence the series S | Ym+i(&) — Ym (x) \ and the séquence

| Y m fa) I both converge uniformly on j x - a \ <ih.

Erom (47),
T maie" I Y^nT^{^\ — Y^n~^{^\ I 1 <T

max

By the WEIERSTRASS comparison test, we infer that the n
séquences j Ym

il)(x) j converge uniformly on | x — a \ ̂  H. Letting,
as in (10),

Y(x)= lim Ym«\x)= lim Tm{x),

we infer, by a well known theorem, that | Ym
(j)(x) j converges

26
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uniformly to Ylj){x). From (43) we infer that

(49) TW(a) = bt, | Y<«{x) - M ^ *,, | Yc«>(aï) - c | ^ &„.

From (8), (9), (42) and the continuity of F for (cc, (#), s) g N\ we
have, for | x — a | <^ ft,

(50) Y ( w )(x)^iqx, Y(#), Y(1)(x), ..., Yw(x)\.

From (5) we infer that

f\x, Y(x), r»>(x), ..., Y{n\x)] » 0,

so that y = Y(a;) is a solution of the differential équation
f(x, y, y', ... , #(M)) = 0, valid on | x — a \ <^h and satisfying (49).

To prove the uniqueness, let U(x) be any function of class
Ccn) on | x — a | < f̂e satisfying (23) and such that

Z7(5c)f ^ ( x ) , .., Z7<->(aî)] s 0.

T h e n b y (5)

(51) U™{x) = -FK

In vie"W of (50) and (51), we obtain from Lemma 3 and (38) the
relation

[ max [ ü(n){x) — Yin\x) \ ] ^

< [Pa{h)]{ m a x | !7<»>(a!) - YM{oc) \ J.
ja;—a ±=.h

In view of (48), we infer that Uln}(x) s Yln\x)9 for | x — a | < K
Since ZĴ ^a) = Y(z)(a)3 n intégrations yield the relation U(x) = Y(x).
This complètes the proof of Theorem 1.

We now give four appraisals of the remainder error.

THEOREM 2. - "With | x — a | <^h and m ^ 2 , if we define

(52) Wm(x) = max | YÜ\t) ~ Y%Ut) | ,

then

(53) | Y ( x ) - T m ( x ) | ^

<fr n
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where PQ(t) is given by (38);

(54) | Y(x) - Ym(x) | £ — ^

(55) 1 Y(a) - Ym(x) | ^

(56) i Y(x) Y (x) | <

F ar therraore, (55), (56) are val id regardless of all errors in
eomputation through. the calculation of Ym—1(x)) provided only that
ü= Ym^,(x) is of class C(n) and satisfies (23), and that Ym(x) is
obfcained correctly from Yn—^x).

PROOF. - Since the right member of (44) is a monotone non-
decreasing fiinction of | x — a \ we infer from (52) with m = 2,
and (44) with r = 2, 3, ..., rx, that, for r, > 2,

(57) max | Y^U*) - Y^^) | ^ [Po(^ - a)]n-iW2(x).
ie [o, a;]

By (38) and (48) we see that P0(x — a)<LPQ(h) < 1. Since
lim Y>{u){x) = Y{n){x), on applying (57) for r, = m, m -H l,

w + 2,... , we see by the formula for the sum of a geometrie
series that, for m > 2,

Since Y(t){a)= Ym
(l){a) — 6t, relation (53) follows on integrating w

times. Relation (54) is an immédiate conséquence of (53) and the
f act that the integrand of (53) is a monotone non-decreasing
function of \ tl — a \ .

Relations (55) and (56) are proved from (44) in almost exactly
the same way in which (53) and (54) were proved, but beginning
with the relation (which follows from (52), (44) with r = m, w + 1 ,
..., r , , and from the fact that the right member of (44) is a
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monotone non-decreasing function of | x — a | ):

max | Y%Ut) - Y%\t) \ < [PQ(x - a)]n—+x Wm(x),

for rx >̂ m. Taking rx ™ m, m + 1 , m + 2,..., we obtain (55) and
(56) as in the proof of (53) and (54) above.

The final statement of Theorem 2 follows from the fact that
appraisals (55) and (56) involve only Ym(x) and Ym_1(x), and that
we can consider Ym-_y(x) to be a new Y^x).

The following theorem is of interest in connection with (53)
and (54).

THEOREM 3. - A permissible choice of Yt(x; n) is given by

(58) Yi(x', n) = F(x, 60, 6 l f ..., bH-l9 c).

Tf Yx(x\ n) is so chosen, then

PROOF. - That YY(x; n) can be chosen to equal F(x, bQ,..., &„_!, c)
follows from the continuity of F, on comparing (6) and (20).

By (52) with m ==2,

W%(x) < max | Y%
ln\x) — Y^ix) \ .

which, by (8) and (42) with m = l, and (58),

= max \F[x, T^) , ..., Yt™(x)] - F(x, 60ï ..., bH-lf c) \ ,
\x-a\£h

which5 by (14) and (43), is

i

This complètes the proof.

- For related ideas in a more gênerai setting, cf.
«Implicit functions and their differentials in gênerai analysis»,
by T. H. HILDEBRANDT and LAWRENCE H. GTRAVES, Trans. Amer.
Math. Soc, Yol. 29 (1927), pp. 127-153.


