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On the Solution of the Differential Equation
fle, y, ¥ ooy y™) =0,

Nota di SuyBaT ABIAN e di ARTHUR B. BRowN (a Flushing, N. Y.)

Sunto. - S¢ indica un procedimento per applicare il metodo delle appros-
stmazioni successive alla soluzione di una equazione implicita differen-
ziale ordinaria d’ordine n, senza risolverla esplicitamente rispetto alla
derivata n-esima. Sono date valutazioni dell’errore sul resto della
approssimazione m-esima

Summary. - 4 procedure is given for applying the method of successive
approximations to the solution of an implicit nt order ordinary differen-
tial equation, without solving explicitly for the nt* derivative. Appraisals
of the remainder error of the m approximation are given.

In this paper a procedure is given for applying the method of
successive approximations to the solution of a differential equation
of the type fix, v, ¥, ..., ¥’} =0, without solving it explicitly
for y". In Theorem 1 below we state the existence and uniqueness
of the solution under hypotheses weaker than those usually
imposed. The statement of the theorem includes an outline of the
procedure for constructing the solution. In Theorem 2 four apprai-
sals of the remainder error of the mth approximation are given;
two in terms of the original data, and two in terms of the mth
and (m — 1)st approximating functions. The latter two appraisals
are valid regardless of errors in computation through the (m — 1)st
approximating function.

The results obtained in this paper generalize and extend those
obtained by the authors for the case n—1.

In what follows, unless otherwise stated, the index i runs from

J
0 to » — 1, the index j runs from 1 to n, y'“x) = y(x), y¥' = %)
and (x, (y), 2) = (®, Yo, ) Yu—1, 2)-
THEOREM 1. - Let f(x, 9q, ..., Yu—1, ) = [(x, (y), 2) be a continuous

real-valued function defined on the closed region N E"*? deter-
mined by the relations

lx_aléH) |yl_bll§HzJ z_cléhn’
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where H, H; and h, are » + 2 positive constants, and let there

be # + 2 non-negative constants M;, D, and D,, with D, > 0 and
D, > 0, such that, for points belonging to N,

1) |z, (y), 2) — fl, (1), Z)I_S_?M.-Iys—'fuf,

@) | fla, (b), o)l <h.D,,

and, if 2=,

o~ <D,.

Then there exists % + 1 positive constants » < H and h; < H;
such that the differential equation

x, o, 4y, .., y") =0
Y Y Y

has a unique solution % = Y(x) in the interval jx —a| < h, with
CY9a)=1b;,| YOx) —b; | < h; and | Y (x) — c| < h,,.

Furthermore, # and h; can be chosen so that if we let £ be
any constant satisfying

4) 0 < k[leD, + | fla, (b), ¢)|] < 2,
and if for (x, (y), 2)€ N we define
) Flx, (), 2) = 2z — kf(z, (), 2),

then for m =1, 2,... and =20, 1, ..., %, the function Y, (x; #) is
well defined and continuous on |x — a|<h, Where Y,(x; 7) is
determined as follows.

Let Y,(x; n) be any function continuous on |[x —a|=<h, and
satisfying

(6) !Yl(x; n)-—cléhny
and
@) Yalws m— )= buy+ [ Volts m—i+ 1)t

(8) Ym+l(x; n) - F[ﬂ’, Ym(“c; 0)7 Y:n(x; 1)’ AR Ym(x; "’)]'
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Furthermore, if we define

(9) Ym(x) - Ym(xa 0)} I x— I é h’)
then
(10) Y(x)= lim Y, (x), |z —a| < h.

Before beginning the proof we observe that it is clear that
the hypotheses are easily satisfied for a given point (a, (b), ¢) if
fle, (y). 2) is of class ¢ in a mneighborhood of (a, (b), ¢), and
0 0
a—i(a, (b), ¢)>0. 1t Eéf(a’ (b), ¢) <0, or in general if (3) is satisfied
with D, and D, both negative, we can obtain a condition of the
form (3) by changing the sign of f.

‘We shall prove the theorem with the help of the following
five lemmas.

LeMyMA 1. - Let

(11) B=max (|1 —kD,|, |1 —EkD,|), and 4, = kM,.
Then

(12) 0<B<1,

(13) (L — Bk, — k| f(a, (), ¢)| >0,

and, for points belonging to N,
(14) [Fl, (y), 2) —Fl®, (1), Y| <24, |y, — = [+ Ble—L|

Proor. - Since D, > 0, we see from (4) that 0 << kD, < 2. From
(3) we see that D, << D,. Since D, > 0, it follows that both 1 — kD,
and 1 — kD, are less than 1 in absolute value. Hence B, as defined
in (11), satisfies (12).

To prove (13), we first note that, since D, < D,, the only pos-
sible values for B are 1 — kD, and kD,— 1. If B=1—EkD,, (13)
follows from (2). If B=#kD, — 1, (13) follows from (4). We turn
now to the proof of (14).

For points belonging to N, if 25={, then, since £ > 0, we infer
from (3) that

(15) 1— kD, <1— 1 (& W D — 1l @) 9

e <1—kD,.
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Obviously,
(16) Flz, (y) 2)— Flx, (1), &) =Flz, (y), 2) — Flx, (1) 2) +
+ F(wy M):z) _F(wy M)’ c)a
which, by (5),
= | — k[flz, (y),2) — flz, (1), 2)] +
“+ {z — ) — Kflz, (1), 2) — fl, (2), O]l

Relation (14), including the case z—=2{, is now seen to follow from
(16), (1), (11) and (15). This completes the proof of Lemma 1.

LeuMA 2. - There exist # + 1 positive constants » < H and
h; < H; such that

B
(18) h(lc|+h) =< o,

199 % AN 4 B)<hoy §=2 3

( ) Ulbn—j-f-,-l;,_"’—j"'”cl_'_ n): n—j3 .7— 3 3oy N,
r=1 4 .

and

(20) ]F(IB, Y, z)'—cléh"

for every point of the closed region N'CC N defined by

21 lx—a|<h, |y:— b, | < h,, lz—c|Zh,.

Proor. — From (13) and the continuity of Fix, (y), 2) we infer
that positive constants h < H and h; < H; exist such that, for
le—a|<h and |y, — b, | < b,

22) [ F(=, (), ¢) — Fla, (b), 0| <(1— B, —Elfia, (), o)|
It is clear from (12) that h can be decreased in value so that (17),

(18) and (19) are satisfied, and that (22) will remain valid. Further,
if (x, (y), 2) satisfies (21), from the obvious inequality

| Flz, (y) 2) —c| < | Fla, (y), 2) — Flo, (y), 0] +
+]F(xa (y); c)—F(a, (b) C)I+IF(a’ (b)’ C)‘—C!,
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and from (14), (21), (22) and (5), we infer that
| Fx, (y), 2) —¢| < Bh, + (1 — B)h, = h,,.
Hence (20) is satisfied, and Lemma 2 is p}'oved.

LemyMa 3. - If Ux) and V(x) are of class C™ on |x— a| < b,
with

(23)  U9@)=b;,, |U%@)—b|<h, |TU"@)—c|<h,,
@4 V9@ =b, |VO@) —bi<h, |V —c|<h,,

then

(25) |Flz, V(z), VO(), ..., V)] — Flz, Ulw), UP@), ..., U"@)]| <

ﬂx l ] (n) —_— (n) ]
[B+2.A—( — ]Lr(n[:i][V ) — U |

ProoF. - In view of (23) and (24) the arguments of F in (25)
are coordinates of points belonging to N'CCN. Hence we may
apply Lemma 1, and from (14) we infer that

(26) | Flz, Viw),..., V()] — Floe, U), ..., UP()]| <

<[4 V@) — UO@) |1+ Blmax | Vot) — U0)| ]

Since by (23) and (24) V%(a) = U“(a) we have, obviously,
V(z)(x) U(;)(x —f[V(I,-f-l) E U(i+l)(£)]dz,

application of which with i successively equal to n —1, » —2,.
, 1, 0, in view of (26) and the fact that [max | VO@t) — U1 I]

€ [a, ]
is a monotone mon-decreasing function of |z — al, yields (25).

Hence Lemma 3 is valid.

Levma 4. - Let U(x; m) be a continuous function on
| —a| <h with

(27 [ U@; ) —c| < h,,
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and let us define, for |x —a | <h,

(28) Ux; n—jy=b,—, +/U(t; n — j + 1)dt,
and
(29) U(x) = U(x; 0).

Then U(x) is of class C“ with
(30) Ux) = Ulx; j)
and Ul(x) satisfies (23) for |z —a | < h.
Proor. - From (28). by differentiation with respect to x. we
find U'(x; ¢)= U(x; ¢+ + 1) and hence, in view of (29), relation (30)

is satisfied and comsequently U(x)is of class C™ and Ulx; n —j)
is of class C.

The next step in the proof of LLemma 4 is to show that
(31) | U(x; 4) — b, | < h,, lz—a| < h.

By (27) and (28) we have
(32) | U@, w—1) —b,—, | < |e—al|(lc|+ h),

which by (18) yields (31) for ¢ =n — 1.
From (32) we have

| O; m—1) [ < |bumy | + |2 —al(]e]+h),

and hence, using (28) with j =2, we obtain

x
U n—2) = by | <1 [0 |+ [t —al (o] + Bt | =
a

| —al

=|b,—| lx—a|+ 5 (|c|+ h,).

From (19) with j =2 we now infer that (31) is true fori =mn — 2.
It is easy to show, in similar fashion, for j=3, ..., », and for
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| —a| < h, that

e S e,

. IS
s n )= by | < 2 | Bujr |

and from (19) we infer that’(31) is true for ¢ =n —3, »n —2,...,
.., 1, 0. This completes the proof of (31).

Relations (23) are now seen to follow from (28), (29), (30), (31)
and (27). Hence Lemma 4 is proved.

Leumma 5. - Let U(x) satisfy the hypotheses of Lemma 4 and
let us define, for |z —a | < h,

(38) Vix; )= F(z, Ulx) UV(),..., U"()],
(34) Vie; 0 — j) = by + j Vit; n—j+ 1)dt,
and i

(35) Vie)= V(x; 0).

Then V(x) satisfies the hypotheses of T.emma 4, U(x) and V(x)
satisfy the hipotheses of Lemma 3, and

(36) V) = V(x; 5)-

Furthermore, if W(x) is defined in terms of V(x) in exactly
the same way in which V(x) is defined (in this lemma) in terms
of U(x), then for |x—a | <h

(37) max | W) — Vo(t) | <
t€a, x]

=[Pyl — a)][tlel%axll Veng) — o) |,

where

— hg LB
(38) Pyt)=B + %Ai =3

Proor. - Since, by Lemma 4, U(x) satisfies (23), we see from
(33) and (20} that, for |z —a | <h, | V(x; n)—c | < h,. Hence
V(x; n) satisfies the same hypotheses as U(x; #) of Lemma 4. On
comparing (34), (36) with (28), (29), we see that V(x) is defined in
terms of V(x; ») in the same way in which U(x) is defined in
terms of U(x; ). Hence the conclusion of Liemma 4 can be ap-
plied to V(x), and we infer from (30) that (36) is satisfied, and
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from Lemma 4 that U(x) and V(x) satisfy the hypoteses of Lemma
3. It remains to prove (37).
From (36) with j =# and from (33) we have

(39) VOi(x) = Flo, Ulx), UV), ..., U™(x)]
‘We then infer from the hypothesis on W that
(40) W) = Flx, V(x), V), ..., V*(x)}.

Since U(x) and V(x) satisfy the hipotheses of Llemma 3, we infer
from that lemma and from (39), (40) and (38) that

(A1) | Wia) — Vo) | < [Pole — @)l max | V) — U |1

Since the right member of (41) is a monotone non-decreasing
function of | x —a |, we infer the truth of (37), and Lemma 5 is
proved.

Now returning to the theorem, if we compare (6) with (27),
(7) for m =1 with (28), and (9) for m —=1 with (29), we see by
(30) that

Y, Px) = Y, (=; j),

and hence (8) with m — 1 shows that U(x) = Y,(x), Y,(x)= Y,(x),
satisfy (33). In similar fashion, we can obtain easily that Ul(x)=

= Y,(=), V(x)= Y,x), W(x) = Y,(«) satisfy the hypotheses of Lemma
5, and, by mathema.t.lcal induction, that for m =1, U(x)= Y, (=),

V(x) = Yo p(x), W(x) = Y,,4.(x) satisfy the hypotheses of Lemma 5,
hence of lemma 4. Therefore

(42) Y, (@5 §) = Y, (),

and U(x) = Y, (x) satisfies (23}, that is,

43) Y.“e)=b; |7, %) —=b|<hi;, |Y,")—c|Zh;

and in addition we infer from (41), for |x —a | < h and r =2, that

(44) | Yh(@) — Y@).0 <[P, (@ — alll max | Y — Y | 1.

r—l
Lt

T
(45) Pyt)=B 7 "‘%Ai(m,

| ¢ In—i+j
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so that, in view of (38), for j=0,1, ..., n — 1,

(46) & — q)dE | —P,, (@—a).

In view of the e(iualities in (43) and the fact that the right
member of (44)is a monotone non-decreasing function of | x—a |,
we obtain from (44) and (46) by integration, with j successively
equal to 1, 2, ..., n, for m > 2, with r =m,

47) [max | Yordt) — Y "t 11<

te [a, x]

<IPfe—allmax | Ya't) ~ Yualt) | ]

From (44),
[ max | Ym+1( ) — Y(J:)(a”) 1=

|z—al=h

< [P} max | YD) — Yomla(@) 1 1

From (38) and (17) we see that
(48) 0<<Pyh) <1

. R (n) (n)
Hence the series 2 | Y,ii(®) — Ym'(x)| and the sequence

m=1
| Yi,':)(w)i both converge uniformly on [z - a| < h.
From (47),

[ max | Yordw) — Y50 P@) 1<

|~ a|=h

< PO max | Yo(w) — Yol a(@) | ]-

r—a|=h

By the WEIEBRSTRASS comparison test, we infer that the =
sequences | Y,,“(x)| converge uniformly on | x —a | < h. Letting,
as in (10),

Y(@)= lim Y,«)= lim Y,(x),
m —» Q0 m ~—> Q0

we infer, by a well known theorem, that | Y,?(x)| converges

26
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uniformly to Y“(x). From (43) we infer that
49) Y9Na)y=b,, | Y®Mw®)—b, |<h, |Y"Nx)—c|<h,.

From (8), (9), (42) and the continuity of F for (x, (y), ) € N'. we
have, for |x —a | <h,

(50) YY) = Fla, Y(@), YO@), ..., Y"))
From (5) we infer that
floe, Y(x), YO (), ..., Y™(x)] =0,

so that y = Y(x) is a solution of the differential equation
fle, v, ¥, ., ¥)=0, valid on |z —«a | < h and satisfying (49).

To prove the uniqueness, let U(x) be any function of class
C™ on | & —a | < h satisfying (23) and such that

flz, Ux), Ulx), .., U(x)] = 0.
Then by (5)
(61) U™ (x) = Flz, U), ..., T"(x)].
In view of (60) and (51), we obtain from Lemma 3 and (38) the

relation

[ max [U™(x)—Y"@)|]<

|x—al<h

S [Poh))] max | U™(x) — YY) | ]
je—a <h
In view of (48), we infer that U"(x)= Y"™(x), for |x—a | < h.
Since U®(a)= Y®(a), » integrations yield the relation U(x) = Y(x).
This completes the proof of Theorem 1.
We now give four appraisals of the remainder error.

THEOREM 2. - With |x—a | < h and m > 2, if we define

(52) W, (@) = max | Yo (b — Yolat) |,
tf[a) w]
then
x tn

[Po(t —_ a)‘lm—-l
<
f[ f Pt — a) dtl .o dt, . dt,,
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where P(t) is given by (38);

. n W2 Po — N1
(54) | Y(x) — V(@) | < L %!a| iwi[_ P(i:m —“2) ’

(89) | Y(@) — Yu(@) | =

z Tn

SIS =

| —a Iu Po(x - a’) m(x)
n! 1—Prx—a) ’

(56) P Y(@) — Y,(@) | <

m

Furthermore, (55), (56) are valid regardless of all errors in
computation through the calculation of Y, _ (x), provided only that
U=7Y,_,(x) is of class C"™ and satisfies (23), and that Y, (x) is
obtained correctly from Y, _,(x).

Proor. - Since the right member of (44) is a monotone non-
decreasing function of | x — a | we infer from (52) with w = 2,
and (44) with » =2, 3, ..., r,, that, for r, > 2,

7) max | Y¥oa(t) — YR(t) | < [Poe — a)jn—21 W,(a).
te (o, %]

By (38) and (48) we see that Pyx — a)<< Pyh) <1. Since
lim Y, (x) = Y™ (x), on applying (57) for », =m, m + 1,

7 —> QC
m~+ 2,.., we see by the formula for the sum of a geometric
series that, for m =2,

[Pyl — a)]— W,(x) .

| YW@) — Y@ | S —p )

Since Y*(a)= Y,“(a) =0b,, relation (53) follows on integrating =
times. Relation (54) is an immediate consequence of {53) and the
fact that the integrand of (63) is a monotone mnon-decreasing
function of | {, —a|. ‘

Relations (55) and (56) are proved from (44) in almost exactly
the same way in which (53) and (54) were proved, but beginning
with the relation (which follows from (52), (44) with » =m, m + 1,
w.y 7, and from the fact that the right member of (44) is a
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monotone non-decreasing function of | x —a | ):

Jmax | Ykt — Y | < [Pe — a)ln=m i W, @)
€la, x]

for r, = m. Taking r,=m, m + 1, m + 2,..., we obtain (55) and
(56) as in the proof of (563) and (54) above.

The final statement of Theorem 2 follows from the fact that
appraisals (55) and (56) involve only Y,(x) and Y,_,(x), and that
we can consider Y, (x) to be a new Y,(x).

The following theorem is of interest in connection with (53)
and (54).

THEOREM 3. — A permissible choice of Y(x; n) is given by
(58) Yi(x; ») = F(x, by, by, .o, buy, ©).
1f Y,(x; ») is so chosen, then
Wy(x) < Bh,, + 3‘, Ah,.

Proow. - That Y,(x; n) can be chosen to equal F(x, b, ..., b,—,, ¢)
foliows from the continuity of F, on comparing (6) and (20).
By (52) with m =2,

W) < max | T,"()— L,"@) |,

je—al=h
which, by (8) and (42) with m =1, and (58),

= max |Fle, V@), L] —F@, byy oy bamy, 01,

lz—a|=h
which, by (14) and (43), is

< 3 AR, + Bh,.
?

This completes the proof.
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