BOLLETTINO UNIONE MATEMATICA ITALIANA

CESARINA MARCHIONNA TIBILETTI

Sui prodotti ordinati di gruppi finiti.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 13 (1958), n.1, p. 46–57.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1958_3_13_1_46_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Sui prodotti ordinati di gruppi finiti.

Nota di Cesarina Marchionna Tibiletti (a Milano)

Sunto. - Si studia la struttura dei sottogruppi di certi prodotti ordinati di gruppi finiti e si stabilisce un teorema del tipo di Sylow.

Summary. - The subgroup structure of ordered products of some finite groups is studied and a theorem like Sylow's is given.

1. In un precedente lavoro (1) abbiamo già considerato i prodotti ordinati di un numero finito di gruppi.

Per comodità del lettore ricordiamo che un gruppo G è un prodotto ordinato di s gruppi A_1, A_2, \ldots, A_s e scriviamo

$$G = A, A, \dots A$$

quando:

1) i gruppi A_i sono sottogruppi di G soddisfacenti alle seguenti proprietà: il gruppo A_s , che conviene chiamare anche G_s , è permutabile con A_{s-1} onde è costruibile il gruppo $G_{s-1} = A_{s-1}A_s = A_{s-1}G_s$ (²); in generale il gruppo $G_j = A_j G_{j+1}$ é permutabile con A_{j-1} e $G_{j-1} = A_{j-1}G_j$ $(j=2,\ldots,s-1)$ ed infine $G_1 = A_1G_2 = G$;

2) è
$$G_j \cap A_{j-1} = 1 \ (j = 2, ..., s)$$
.

Diciamo inoltre che il prodotto ordinato G è a catena normale quando ogni gruppo G, è normale in G_{i-1} e che G è a catena principale quando ogni G_i è normale in G.

In questo lavoro consideriamo i prodotti ordinati G di gruppi finiti A_i e diamo alcune proprietà circa la struttura dei loro sottogruppi. Precisamente, mostriamo anzitutto che i sottogruppi dei prodotti ordinati a catena normale di gruppi A_i aventi ordini a due a due primi 'fra di loro sono, a loro volta, prodotti ordinati dello stesso tipo, e stabiliamo, sotto varie ipotesi, proprietà di tali sottogruppi in relazione ai gruppi A_i ed ai loro coniugati in G.

Indichiamo poi proprietà analoghe per i sottogruppi normali di prodotti ordinati (qualsiansi) di gruppi aventi ancora ordini a due a due primi fra di loro.

⁽¹⁾ Cfr. [3].

⁽²⁾ Cfr. [6], cap. III, n. 24, pag. 61.

Infine alcuni dei risultati conseguiti ci permettono di dare un teorema il quale contiene simultaneamente un teorema di G. Zappa (3) ed un teorema di P. Hall (4) relativi a problemi del tipo di Sylow.

2. In questo paragrafo riportiamo una nomenclatura che ci sarà utile in seguito.

Si chiama sottogruppo di Hall di un gruppo finito G un sottogruppo H il cui ordine sia primo col suo indice in G (5).

Ricordiamo ora qualche definizione data da HALL [2] (6).

Sia $\tilde{\omega}$ un insieme di numeri primi ed $\tilde{\omega}'$ l'insieme (complementare) formato dai numeri primi non contenuti in $\tilde{\omega}$; ovviamente ogni intero positivo n si potrà scrivere, in modo unico, nella forma

$$n = n_{\tilde{\omega}} \cdot n_{\tilde{\omega}'}$$

ove n_{\odot} è il più grande divisore di n che non ha divisori primi contenuti in \Im' .

Sia G un gruppo finito di ordine n (con $n = n_{\odot} \cdot n_{\odot}$) com'è stato detto or ora); secondo Hall si dice che:

- 1) G soddisfa alla condizione E_{\odot} : se ha almeno un sottogruppo (di Hall) di ordine n_{\odot} ;
- 2) G soddisfa alla condizione C_{ϖ} ; se soddisfa ad E_{ϖ} e due suoi qualsiansi sottogruppi (di Hall) di ordine n_{ϖ} sono coniugati in G;
- 3) G soddisfa alla condizione $D_{\bar{\omega}}$: se soddisfa alla $C_{\bar{\omega}}$ ed ogni sottogruppo di G il cui ordine divide $n_{\bar{\omega}}$ è contenuto in un sottogruppo (di Hall) di G di ordine $n_{\bar{\omega}}$.
 - 3. In questo paragrafo diamo alcuni lemmi utili per il seguito.

LEMMA 1. – Un gruppo finito G contenga un sottogruppo H di HALL normale: allora ogni sottogruppo K di G il cui ordine divida quello di H è contenuto in H stesso.

Questa proprietà è un'immediata conseguenza del teorema di Sylow. Ovviamente i sottogruppi di Sylow di K stanno in sotto-

⁽³⁾ Cfr. [7], n. 1.

⁽⁴⁾ Cfr. [2], n. 1.3, teorema A 1.

⁽⁵⁾ Cfr. [7], n. 1. Questo H risulta un $S_{\tilde{\omega}}$ -sottogruppo di G, secondo la nomenclatura di Hall (cfr. [2], n, 1.1), essendo $\tilde{\omega}$ l'insieme dei numeri primi per cui è divisibile l'ordine di H.

⁽⁶⁾ Cfr. [2], n. 1.1.

gruppi di Sylow di H e quindi in H. Pertanto K, pensato come unione dei suoi sottogruppi di Sylow, risulta contenuto in H.

Lemma 2. – Sia $G = A_1, ..., A_{s-1}A_s$ il prodotto ordinato di s gruppi $A_1, ..., A_{s-1}, A_s$ (finiti od infiniti). Lo stesso G è anche prodotto ordinato $G = A'_1 ... A'_{s-1}A_s$ dei gruppi $A'_1, ..., A'_{s-1}, A_s$ ove ogni sottogruppo A_i' (i = 1, ..., s – 1) è un qualsiasi gruppo trasformato di A_s per un elemento del sottogruppo $G_{s+1} = A_{s+1} ... A_s$. Se poi $G = A_s, ..., A_{s-1}A_s$ è un prodotto ordinato a catena normale [o principale] dei gruppi A_s anche $A'_1, ..., A'_{s-1}A_s$ è un prodotto ordinato a catena normale [o principale] dei gruppi $A'_1, ..., A'_{s-1}, A_s$.

Verifichiamo dapprima che il teorema è vero per s=2: sia $G=A_1A_2$.

Indichiamo con $g = a_1 \cdot a_2$ un generico elemento di G ove a_1 ed a_2 sono rispettivamente un elemento di A_1 ed uno di A_2 (7).

Sia A_1 ' il sottogruppo trasformato di A_1 per un elemento a_2 ' (di A_2). Moltiplichiamo a sinistra tutti i $g = a_1 a_2$ per $(a_2)^{-1}$: si ha

$$(a_{\mathbf{2}}')^{-1}g = (a_{\mathbf{2}}')^{-1}a_{\mathbf{1}}a_{\mathbf{2}}'(a_{\mathbf{2}}')^{-1}a_{\mathbf{2}} = +(a_{\mathbf{2}}')^{-1}a_{\mathbf{1}}a_{\mathbf{2}}' + a_{\mathbf{2}}''.$$

Ciò indica che tutti gli elementi di G possono essere scritti come prodotto di un elemento di A_1 per uno di A_2 . Quindi risulta $G = A_1 A_2$ (8).

Ora verifichiamo che il teorema è vero per un s qualsiasi: sia $G = A_1A_2 \dots A_s$. Per definizione è $G = A_1G_2$ (ove $G_2 = A_2 \dots A_s$). Quindi si ha $G = A_1'G_2$ ove A_1' è un qualsiasi gruppo coniugato di A_1 in G (trasformato di A_1 per un elemento di G_2). Inoltre $G_2 = A_2G_3$ e pertanto $G_2 = A_2'G_3$ ove A_2' è un sottogruppo coniugato di A_2 in G_2 , ecc.

Notiamo infine che $G_j = A_j \dots A_s$ coincide con $G_j' = A_j' \dots A_{s-1}' A_s$ (per $1 \le j \le s$); pertanto se G_j è normale in G_{j-1} (o in G) anche G_j' è normale in G'_{j-1} (o in G).

Così risulta completamente dimostrato il lemma 2.

LEMMA 3. – Un gruppo finito G possegga una catena normale $G = G_1 \supset G_2 \supset ... \supset G_{h-1} \supset G_h = 1$ i cui indici (°) siano dati da numeri a due a due primi fra di loro. Allora una tal catena è principale.

Diamo una dimostrazione per induzione.

- (7) Indichiamo con a_i dotato eventualmente di apici un elemento di A_i .
- (8) Questa proprietà vale ovviamente anche se $A_1 \cap A_2 = I$ ove I è un gruppo diverso dal gruppo identico.
 - 9) Gli indici della catena sono gli indici di ogni gruppo G_i in G_{i-1} .

Supponiamo che un sottogruppo G_i sia normale in G e verifichiamo che, in questa ipotesi, anche G_{i+1} è normale in G. Ora, ogni trasformato G'_{i+1} di G_{i+1} per elementi di G sta in G_i . Poichè G_{i+1} è un sottogruppo normale di Hall di G_i , per il lemma 1 il sottogruppo G'_{i+1} sta in G_{i+1} e quindi coincide con G_{i+1} stesso. Ne viene che G_{i+1} è normale in G nell'ipotesi posta.

Poichè G_2 è normale in G il lemma risulta completamente dimostrato.

LEMMA 4. – Se un gruppo finito $G = A_1 ... A_s$ è un prodotto ordinato a catena normale di s gruppi finiti A_s aventi ordini dati da numeri a due a due primi fra di loro, esso è anche prodotto ordinato $G = A_1 ... A_s$ a catena principale degli stessi gruppi A_s .

Questa proprietà deriva immediatamente dal precedente lemma 3 in quanto la catena contenuta in G:

$$G = G_1 \supset G_2 \supset G_3 \supset ... \supset G_s \supset 1$$

(ove $G_i = A_i ... A_s$) è per ipotesi una catena normale con indici a due a due primi fra di loro.

Lemma 5. – Sia $G = A_1 \dots A_s$ un prodotto ordinato di s gruppi A_i . Sia H un sottogruppo qualsiasi di G. In H è contenuta la catena

$$(1) H = H_1 \supseteq H_2 \supseteq ... \supseteq H_s$$

ove $H_i = H \cap G_i$ (essendo $G_i = A_i ... A_i$). Se G è un prodotto ordinato a catena normale [o principale] la (1) è una catena normale [o rispettivamente principale].

Se poi G è un prodotto ordinato a catena normale di s gruppi finiti A_i aventi ordini n_i dati da numeri a due a due primi fra di loro (e quindi G è prodotto ordinato a catena principale dei gruppi A_i), scritto l'ordine m di H nella forma $m = m_1 \dots m_s$ (ove $m_i = D(m, n_i)$), i gruppi H_i hanno rispettivamente ordine $\mu_i = m_1 \dots m_s$.

Dato un prodotto ordinato $G = A_1 \dots A_s$ è ovvia l'esistenza di una catena (1) per ogni sottogruppo H di G.

Sia G un prodotto ordinato a catena normale: il gruppo $H_i = H \cap G_i = H_{i-1} \cap G_i$ viene trasformato in sè dagli elementi di H_{i-1} . Se poi G è un prodotto ordinato a catena principale il gruppo $H_i = H \cap G_i$ viene trasformato in sè dagli elementi di H. Quindi nei due precedenti casi la (1) è rispettivamente una catena normale ed una catena principale.

I gruppi A_i abbiano ordini n_i dati da numeri a due a due primi fra di loro: allora G, che per ipotesi è prodotto a catena

normale dei gruppi A_i , è anche (cfr. lemma 4) prodotto a catena principale degli stessi gruppi. La catena (1) risulta pertanto principale.

Ora, per il lemma 1, il sottogruppo G_i contiene tutti gli elementi di G il cui periodo è un divisore dell'ordine di G_i e in particolare H_i contiene tutti i sottogruppi di Sylow di H il cui ordine è un divisore di $\mu_i = m_i \dots m_s$. L'unione di tali sottogruppi di Sylow coincide con H_i che quindi ha ordine $\mu_i = m_i \dots m_s$.

4. In questo paragrafo diamo tre teoremi (nn. 6, 7, 8) che riguardano la struttura dei sottogruppi dei prodotti ordinati a catena normale di gruppi finiti A_i aventi ordini a due a due primi fra di loro. Ricordiamo subito che, per il lemma 4, tali prodotti ordinati risultano senz' altro a catena principale.

Teorema 6. – Sia $G = A_1 ... A_s$ un gruppo finito di ordine n che risulti prodotto ordinato a catena normale (e quindi principale) di s gruppi A_s aventi rispettivamente ordini n_s dati da numeri a due a due primi fra di loro. Si indichi con \mathfrak{S}_s l'insieme dei numeri primi che dividono n_s .

a) Un sottogruppo H di G (il cui ordine m si può scrivere $m=m_1\dots m_s$ con $m_i=D(m,\,n_i)$) è un prodotto ordinato a catena principale

$$H = B_1 \dots B_r$$

(ove B_i ha ordine m_i) (10).

b) Inoltre se per ogni $1 \le i \le s-1$ il sottogruppo $G_i = A_i ... A_s$ soddisfa alla condizione D_{ϖ_i} si può scrivere $G = A_1' ... A'_{s-1} A_s - s$ sempre prodotto ordinato a catena principale — ove A_i' è un sottogruppo di G_i coniugato di A_i (precisamente un trasformato di A_i mediante un elemento di G_{i+1}) con $B_i \subseteq A_i'$ per $1 \le i \le s-1$ e $B_s \subseteq A_s$.

Per il precedente lemma 5 il sottogruppo H ammette la catena

$$(1) H = H_1 \supseteq H_2 \supseteq ... \supseteq H_s$$

che nelle attuali ipotesi è catena principale.

Per il teorema di Schur, riportato da Hall come teorema

(10) Naturalmente qualcuno dei numeri m_i può essere $m_i=1$: allora il corrispondente gruppo B_i si ridurrà alla sola unità.

E1 (11), il sottogruppo H che contiene il gruppo H_2 , di ordine $m_2 \dots m_s$ (v. lemma 5), normale, contiene anche un sottogruppo B_1 di ordine m_1 . Dati gli ordini di B_1 ed H_2 si ha $B_1 \cap H_2 = 1$; allora i prodotti di un elemento di B_1 e di uno di H_2 , che sono tutti fra loro diversi, esauriscono tutto il gruppo H. Pertanto è $H = B_1 H_2$.

Per lo stesso teorema di Schur citato sopra, H_2 contiene un sottogruppo B_2 di ordine m_2 , per cui $H_2 = B_2 H_3$; il sottogruppo H_3 contiene un sottogruppo B_3 di ordine m_3 per cui $H_3 = B_3 H_4$. ecc.

Quindi, poichè la catena (1) è principale il sottogruppo H è prodotto ordinato a catena principale

$$H = B_1 \dots B_s$$

(con $B_s = H_s$) dei gruppi B_i .

Ora, come è detto nel comma b) dell'enunciato supponiamo che, per ogni $1 \le i \le s-1$, il sottogruppo G_i soddisfi alla condizione D_{\odot_i} . Allora B_i che sta in G_i (con $1 \le i \le s-1$) è contenuto in un sottogruppo A_i coniugato di A_i (trasformato quindi di A_i per qualche elemento di G_{i+1}).

Pertanto per il lemma 2 si ha

$$G = A'_1 \dots A'_{s-1} A_s$$

prodotto ordinato a catena principale dei gruppi $A'_1, \ldots, A'_{s-1}, A_s$ con $B_i \subseteq A_i'$ per $1 \le i \le s-1$ e $B_s \subseteq A_s$.

Notiamo che i vari criteri ricordati o introdotti da Hall in [2] nei suoi D-teoremi (i quali danno condizioni sufficienti perchè sia verificata per un gruppo G la condizione D_{ω}) applicati sul comma b) del precedente teorema 6 danno luogo ad alcuni corollari del teorema 6 stesso.

Per esempio; se i gruppi A_i sono speciali (12) valgono le ipotesi del comma b) del teorema 6 e quindi tutte le proprietà indicate dal teorema stesso (e ciò per un risultato di Wielandt (18)), ecc.

⁽¹¹⁾ Cfr. [2], n. 1.7, pag. 291. Tale teorema E 1 si enuncia così: « Siano: $\tilde{\omega}$ un insieme di numeri primi ed $\tilde{\omega}'$ l'insieme complementare (efr. n. 2), e sia G un gruppo di ordine $n = n_{\tilde{\omega}} \cdot n_{\tilde{\omega}'}$. Se G ha un sottogruppo (di Hall) normale di ordine $n_{\tilde{\omega}'}$, allora G soddisfa $E_{\tilde{\omega}}$ (efr. n. 2) ».

⁽¹²⁾ Cfr. [6], cap V, § 3, pag. 137.

⁽¹³⁾ Cfr. [5] e in [2] il teorema D 4 del n. 12 a pag. 287.

Il seguente teorema 7, basato sull'uso del classico teorema di Syllow, risponde ad un problema analogo a quello considerato dal teorema 6 senza essere completamente deducibile da quest'ultimo.

TEOREMA 7. – Sia $G = A_1 ... A_s$ un prodotto ordinato a catena normale, (e quindi principale) di s gruppi finiti A_i aventi rispettivamente ordini n_i dati da numeri a due a due primi fra di loro.

Un sottogruppo H di G di ordine $\mathbf{m} = \mathbf{p}_1 \boldsymbol{\beta}_1 \dots \mathbf{p}_{s-1}^{\boldsymbol{\beta}_{s-1}} \cdot r_s$ ove $\mathbf{p}_i \boldsymbol{\beta}_i$ è un divisore di \mathbf{n}_i ($1 \le i \le s-1$) ed \mathbf{r}_s è un divisore di \mathbf{n}_s (essendo i \mathbf{p}_i numeri primi), è un prodotto ordinato a catena principale

$$\mathbf{H} = \mathbf{B}_1 \dots \mathbf{B}_s$$

dei gruppi B_i ove B_i (per $1 \le i \le s-1$) ha ordine $p_i\beta_i$ e B_s ha ordine r_s .

Inoltre si ha: $B_s \subseteq A_s$ e $B_i \subseteq A'$, (per $1 \le i \le s-1$), ove A'_i è un sottogruppo di G coniugato di A_i (ottenuto trasformando A_i con un elemento di $G_{i+1} = A_{i+1} \dots A_s$), e G è prodotto ordinato a catena normale

$$G = A'_i \dots A'_{s-1} A_s$$

dei gruppi $A'_i, \ldots, A'_{s-1}, A_s$.

Per il teorema 6 il sottogruppo H è il prodotto ordinato a catena principale

$$H = B_1 \dots B_s$$

indicato nell'enunciato.

Inoltre B_1 è un sottogruppo di Sylow di ordine $p_1^{\beta_1}$ e quindi sta in un sottogruppo di Sylow di G contenuto in A_1 o in un coniugato A_1 di quest'ultimo (trasformato quindi di A_1 con un elemento di G_2); analogamente B_2 sta, per il lemma 1, in G_2 e quindi in un gruppo A_2 coniugato di A_2 in G_2 , ecc.

Per il lemma 2 si ha così

$$G = A_1' \dots A'_{s-1} A_s$$

prodotto ordinato a catena principale dei gruppi $A_1', ..., A'_{s-1}, A_s$.

Si ottiene un altro teorema della stessa natura dei precedenti applicando un teorema di G. Zappa dato in [7] (14).

(**) Ricordiamo anzitutto che un gruppo K di ordine $k=p_1^{\alpha_1}\dots p_r^{\alpha_r}$ (con $p_1>p_2>\dots>p_r$, essendo ogni p_i un numero primo) si dice dispersibile quando, per ciascun i tale che $1\leq i\leq r$, esso contiene un sottogruppo normale di ordine $p_1^{\alpha_1}\dots p_i^{\alpha_i}$. Il teorema di Zappa cui si allude è il

TEOREMA 8. – Sia un gruppo $G = A_1 ... A_s$ prodotto ordinato a catena normale (e quindi principale) di s gruppi finiti A_i aventi ordini n_i dati da numeri a due a due primi fra di loro ove i gruppi A_i per $1 \le i \le s - 1$ sono dispersibili (15).

Un sottogruppo H di G abbia ordine $m=m_1...m_s$ con $m_i=D(m,n_i)$ per $1 \le i \le s$ e $D\left(\frac{n_i}{m_i}, m_i\right)=1$ per $1 \le i \le s-1$. Per ogni m_i con $1 \le i \le s-1$ il sottogruppo H contenga un sottogruppo B_i di ordine m_i dispersibile.

Allora risulta:

$$H = B_1 \dots B_s$$

prodotto ordinato a catena principale dei gruppi B_i e $G = A_1' \dots A'_{s-1}A_s$ prodotto ordinato a catena principale dei gruppi $A_1', \dots A'_{s-1}$, A_s con $B_i \subseteq A_i'$ (per $1 \le i \le s-1$) e $B_s \subseteq A_s$ (essendo A_i' un trasformato di A_i per un elemento di $G_{i+1} = A_{i+1} \dots A_s$).

Per il teorema 6 si ha

$$H = B_1 \dots B_s$$

prodotto ordinato a catena principale.

È inoltre $B_i \subseteq G_i$ e in particolare $B_s \subseteq G_s = A_s$. In virtù delle ipotesi poste, per ogni $1 \le i \le s-1$ il sottogruppo G_i contiene A_i e B_i come gruppi dispersibili di Hall aventi ordine l'uno divisibile per quello dell'altro. Quindi per il sucitato teorema di Zappa (16) esiste in tali G_i un sottogruppo A_i coniugato di A_i per cui è $B_i \subseteq A_i$.

Ne viene, per il lemma 2, la validità del teorema in esame.

5. In questo paragrafo diamo una significativa proprietà di struttura (e un relativo corollario) per i sottogruppi normali contenuti in certi prodotti ordinati di tipo più ampio di quello considerato nel precedente n. 4.

TEOREMA 9. - Un gruppo G sia il prodotto ordinato

$$G = A_1 \dots A_s$$

seguente: « Se M ed H sono due sottogruppi di HALL dispersibili di un gruppo finito G tali che l'ordine di M divida quello di H, il gruppo M \oplus contenuto in un sottogruppo di G coniugato di H».

- (45) Cfr. (44).
- (16) Cfr. (14).

di s gruppi A, tali che gli ordini di due qualsiansi di essi siano numeri primi fra di loro. Allora ogni sottogruppo normale N di G è un prodotto ordinato

$$N = B_1 \dots B_s$$

ove B_i è un sottogruppo normale (eventualmente ridotto alla sola unità) di A_i .

Se G è un prodotto ordinato a catena normale, e quindi a catena principale (dei gruppi A_i), anche N è un prodotto ordinato a catena principale dei gruppi B_i .

Questo teorema è una semplice estensione di un teorema di Szép (17) su cui sarà fondata la seguente dimostrazione.

Si ha $G = A_1 G_2$ ove $G_2 = A_2 \dots A_s$. Per il sucitato teorema di Szep si può scrivere $N = B_1 N_2$ ove B_1 ed N_2 sono rispettivamente sottogruppi normali di A_1 e G_2 . Ora $G_2 = A_2 G_3$ (ove $G_3 = A_3 \dots A_s$) e per lo stesso teorema di Szep si ha $N_2 = B_2 N_3$ con B_2 ed N_3 sottogruppi normali rispettivamente in A_2 e G_3 , ecc.. Quindi $N = B_1 B_2 \dots B_s$ come è detto nell'enunciato.

Se G è prodotto ordinato a catena normale e quindi principale (per il lemma 4) dei gruppi A_i il gruppo G_i è normale in G. Poichè è $N_i = G_i \cap N$ anche N_i è normale in N.

Corollario 10. – Un gruppo G sia il prodotto ordinato di s gruppi finiti semplici A_i

$$G = A_1 \dots A_s$$

ove gli ordini di due qualsiansi gruppi A, sono numeri primi fra di loro. Allora gli eventuali sottogruppi normali di G sono di Hall e più precisamente sono prodotti ordinati del tipo

$$N = A_{i_1} \dots A_{i_h}$$

con $1 \le i_1 < i_2 < ... < i_h \le s$.

Questo corollario è l'estensione di uno analogo di SZEP (18) per s=2. La sua dimostrazione deriva subito dal precedente teorema 9 in quanto gli unici sottogruppi normali di un gruppo semplice A_i sono il gruppo stesso ed il gruppo costituito dalla sola unità.

- (17) Cfr. [4], § 3. Tale teorema dice che: « Se in un gruppo finito G = HK gli ordini dei gruppi H e K sono numeri primi fra di loro, ogni sottogruppo normale \bar{G} di G risulta della forma $\bar{G} = \bar{H}$ \bar{K} ove H e \bar{K} sono rispettivamente sottogruppi normali di H e K.
 - (18) Cfr. [4], § 3, corollario 3.

6. Secondo la nomenclatura di Hall (19) un gruppo G a serie di composizione di Sylow $(p_1, ..., p_r)$ è un gruppo di ordine $p_1^{\alpha_1} ... p_r^{\alpha_r}$, ove $p_1, ..., p_r$ sono numeri distinti, ordinati in certo modo, tale che per ogni i con $1 \le i \le r-1$, G ha un sottogruppo normale di ordine $p_1^{\alpha_1} ... p_r^{\alpha_i}$.

Ora notiamo che tutti e soli i gruppi cosiffatti sono i gruppi G che risultano prodotto ordinato a catena normale (e quindi principale)

$$G = P_r P_{r-1} \dots P_1$$

di r p-gruppi P_1, \dots, P_1 ove P_i ha ordine $p_i^{\alpha_i}$ — ed i p_i sono numeri primi fra loro diversi — (°0).

I gruppi dispersibili (21) si presentano allora come caso particolare di questi gruppi a serie di composizione di Sylow $(p_1, ..., p_r)$.

Nel seguente n. 7 dimostreremo un teorema che risulta un' estensione del già citato teorema di Zappa contenuto in [7]. La dimostrazione del nostro teorema ricalcherà [completamente quella di Zappa (descritta in [7]) una volta stabiliti alcuni lemmi (che sono appunto oggetto di questo paragrafo) analoghi a quelli dati da Zappa in [7] prima del suddetto teorema.

Lemma 11. – Sia G un gruppo a serie di composizione di Sylow $(p_1, ..., p_n)$ di ordine $p_1^{\alpha_1} ... p_r^{\alpha_r}$. In G vi è un solo sottogruppo normale di ordine $\mu_j = p_1^{\alpha_1} ... p_j^{\alpha_j}$ (con $1 \le j \le r - 1$) contenente tutti e soli gli elementi di H il cui ordine divide μ_j .

Questa proposizione appare come un' estensione del lemma 1 di ZAPPA in [7] (22) a proposito dei gruppi dispersibili. Anche la relativa dimostrazione è simile a quella di tale lemma.

Per quanto detto all'inizio del paragrafo, G è il prodotto ordi-

Un gruppo prodotto ordinato a catena normale (e quindi principale — cfr. lemma 4 —) di p-gruppi (con ordini a due a due primi fra di loro) è poi ovviamente un gruppo G avente un'opportuna serie di composizione di Sylow.

⁽¹⁹⁾ Cfr. [2], n. 1.3, pag. 287

⁽²⁰⁾ Ogni gruppo G a serie di composizione di SYLOW (p_1, \ldots, p_r) contiene un sottogruppo normale G_2 di ordine $p_1^{\alpha_1}, \ldots, p_{r-1}^{\alpha_{r-1}}$ ed un sottogruppo di SYLOW P_r di ordine $p_r^{\alpha_r}$, quindi $G = P_r G_2$. Inoltre per il lemma 1 il sottogruppo normale G_3 di G di ordine $p_1^{\alpha_1}, \ldots, p_{r-2}^{\alpha_{r-2}}$ sta in G_2 ; in G_2 vi è anche un sottogruppo di SYLOW P_{r-1} di ordine $p_{r-1}^{\alpha_{r-1}}$ e perciò $G_2 = P_{r-1} G_3$, ecc.

⁽²¹⁾ Cfr. (14) e in [3] l'osservazione seguente il n. 8.

⁽²²⁾ Cfr. [7], n. 2.

nato a catena principale

$$G = P_r P_{r-1} \dots P_1$$

ove P_i ha ordine $p_i^{\alpha_i}$.

Ogni elemento g di G con ordine divisore di μ_j dà con le sue potenze un sottogruppo di G che per il lemma 1 sta in $\Gamma_j = P_j \dots P_j$. Per lo stesso lemma 1 ogni sottogruppo di G di ordine μ_j sta in Γ_j e quindi coincide con Γ_j .

LEMMA 12. – Sia G un gruppo a serie di composizione di Sylow $(p_1, ..., p_r)$ di ordine $p_1^{\alpha_1} ... p_r^{\alpha_r}$ ed S un sottogruppo di Sylow di ordine $p_{i\alpha i}$; l'ordine del normalizzante N di S in G è divisibile per $p_i^{\alpha_i} p_{i+1}^{\alpha_{i+1}} ... p_r^{\alpha_r}$.

La dimostrazione di questa proprietà si conduce esattamente come quella di Zappa per il lemma 2 di [7] (22) usando in luogo del lemma 1) della stessa nota il nostro lemma 11.

Lemma 13. – Sia G un gruppo a serie di composizione di Sylow $(p_1, ..., p_r)$: ogni suo sottogruppo è un gruppo a serie di composizione di Sylow $(p_{i_4}, ..., p_{i_s})$ ove $1 \le i_1 < ... < i_s \le r$.

Questo lemma discende immediatamente dal teorema 7 in quanto G è un prodotto ordinato a catena principale di p-gruppi del tipo sopra descritto.

Ora un sottogruppo H di G è un prodotto ordinato a catena principale $H=B_1 \dots B_r$, come è detto nel teorema 7. Eliminando da tale scrittura i gruppi B_k che si riducono alla sola unità (24) si ha $H=B_{i_1}\dots B_{i_s}$ prodotto ordinato a catena principale dei p-gruppi B_{i_j} di ordine $p_{i_j}^{\beta_i}$ (ove $j=1,\dots s$ ed $1 \le i_1 < \dots < i_s \le r$) con $\beta_{i_j} \ge 1$. Questo lemma risulta un'estensione del lemma 3) di [7] (25).

LEMMA 14. – Ogni prodotto ordinato a catena normale di p-gruppi finiti è un gruppo risolubile.

Infatti ogni prodotto ordinato di questo tipo ammette una serie di composizione con fattori di composizione dati da numeri primi.

7. Siamo ora in grado di dare col seguente teorema 15 l'accennata estensione del teorema di ZAPPA (26) la quale consiste nel

⁽²³⁾ Cfr. [7], n. 2.

⁽²⁴⁾ Cfr. nota (10).

⁽²⁵⁾ Cfr. [7], n. 2.

⁽²⁶⁾ Cfr. nota (14).

sostituire i gruppi dispersibili con i gruppi a serie di composizione di Sylow $(p_1, ..., p_r)$ e $(p_{i_1}, ..., p_{i_s})$.

Notiamo che tale teorema 15 contiene anche, come caso particolare, il teorema A 1 di HALL riferito in [2] (27).

TEOREMA 15. – In un gruppo finito G siano H ed M due sotto-prodotti di Hall di ordini rispettivi $\mathbf{v} = \mathbf{p}_1^{\alpha_1} \dots \mathbf{p}_r^{\alpha_r}$ e $\mathbf{\mu} = \mathbf{p}_{i_1}^{\alpha_{i_1}} \dots \mathbf{p}_{i_s}^{\alpha_{i_s}}$ con $1 \le i_1 < i_2 < \dots < i_s \le \mathbf{r}$, essendo i \mathbf{p}_j (per $1 \le j \le \mathbf{r}$) numeri primi fra loro diversi. Inoltre H ed M siano rispettivamente dei gruppi a serie di composizione di Sylow $(\mathbf{p}_1, \dots, \mathbf{p}_r)$ e $(\mathbf{p}_{i_1}, \dots, \mathbf{p}_{i_s})$. Allora M è contenuto in un sottogruppo di G coniugato di H.

Come si è già detto, la dimostrazione di questo teorema si conduce esattamente come quella di ZAPPA per il sucitato teorema usando (rispettivamente) in luogo dei lemmi 1), 2), 3), 4) di [7] i nostri lemmi 11, 12, 13, 14.

OSSERVAZIONE. Ora, col teorema 15, usato in luogo del teorema di ZAPPA, si può estendere anche il precedente teorema 8 (n. 3) sostituendo opportunamente nell'enunciato stesso i gruppi dispersibili con gruppi a serie di composizione di Sylow $(p_1, ..., p_r)$ o $(p_{i_1}, ..., p_{i_s})$ — essendo $1 \le i_1 < i_2 < ... < i_s \le r$ —.

BIBLIOGRAFIA

- [1] P. Hall, A note on soluble groups, Journal of the London Math. Soc. III (1928), pag. 98.
- [2] P. Hall, Theorems like Sylon's, Proc. of the London Math. Soc., III (1956), pag. 286.
- [3] C. MARCHIONNA TIBILETTI, Immersione in prodotti completi di prodotti ordinati di più gruppi, «Annali di Matematica» (in corso di stampa).
- [4] J. SZEP, On the structure of groups which can be represented as the product of two subgroups, «Acta scientiarum math.», 12 (1950) A, pag. 57.
- [5] H. WIELANDT, Zum Satz von Sylow, Math. Zeits. », 60 (1954), pag. 407.
- [6] G. ZAPPA, Gruppi, corpi, equazioni, Liguori, Napoli 1954.
- [7] G. ZAPPA, Sopra un estensione di Wielandt del teorema di Sylon, « Boll. U. M. I. », III, 4 (1954), pag. 349.
- (27) Cfr. [2] n. 1.3, pag. 288. Tale teorema A1 si enuncia così: « Siano p_1, \ldots, p_r dei numeri primi distinti che dividono l'ordine n di un gruppo G, ordinati in un certo modo. Due sottogruppi di Hall di G che abbiano una serie di composizione di Sylow (p_1, \ldots, p_r) sono coniugati in G.