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Stable distributions and the transforms
of Stieltjes and Le Roy.

Nota di AurerL WINTNER 4 (a Baltimora, Md.)

Sunto. -~ Sfruttando un classico risultato di P. Lavy sulla teoria dei pro-
cesst stocastici, vengono studiate alcune proprieta di certe trasformaziont
di STIELTIES e di Lie Roy e ne vengono fatie varie applicazioni.

Summary - A result of P. Livy, which is now classical in the theory of
stochastic processes, states that CaucHY’s transcendent, defined by for-
mula (1) below, does not attain negative values for real x if and only
if the (positive) index a of (1) does not exceed the value (a —2) belonging
to a normal distribution. It is shown that appropriate transformation s
of this fact lead to curious results concerning the total wmonotony of
certain STIELTIES and Lie Roy transforms. There follows, among other
things, a simple direct proof of a result of W. FELLER on MITTAG-
Lierrrer’s E-functions, and an additional proof of LEvY’s result is
a by-product, along with a connection of all these facts with the con-
stderations of F'. BERNSTEIN and G. DOETSCH on certain VOLTERRA
transforms.

InTrRODUCTION. — If the unit of length is suitably chosen, then,
according to CaucHY [4], pp. 99-101, any symmetric «stable » density
of probability is determined by the FoURIER transform of one of the
functions exp (— | |%), where a is a positive constant. In view of
Fourier’s inversion formula, this means that, if the corresponding
density of probability is denoted by F,(x)/n, where — oo << < oo,
then F,(x) must be of the form

(1) F(x) = f exp (— 2%) cos xt di
0
(for some a > 0). It was assumed for a long time that this necessary

condition is sufficient as well. But (1) actually is a density of
probability if and only if

2) F(x) <0 for some x ==z,

does not take place, and, while this was taken for granted by
CavucaY for every a > 0, F. BERNSTEIN [2] observed that (2) happens
to be the case if a—4 (and his method applies to every even integer
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a exceeding Larrace’s @ = 2). The final result is due to P. Livy
[6], who proved that

(3) F(x)=0 for all = if 0 <a <2,

and that (2) holds for every a > 2 (even if @/2 is not an integer).

It was observed in [8] that, for every a >0, CaAvcHY’S transcen-
dents F,(x) are closely connected with the transcendents &,(x)
defined, for every b >0, by the LiapLacE transforms

(4) Gy(x) = | e~ sin(s?)ds

0\8

(which, of course, are convergent for
(B) 0<x< oo

or Re > 0), and that the functions G,(x), in turn, are connected
with standard entire functions occurring in the analytic continuation
of power series beyond the circle of convergence ([8], p. 681). The
purpose of the present note is to put (4) and its connection with
(1) to explicit use in various directions, and thus to derive a few
curious relations which prove to be equivalent to (3) and to the
sufficiency of a > 2 for (2).

Actually, there will also result an additional proof of Livy’s
fundamental result (3) itself. In this regard, the situation is as
follows: If E,(z) denotes MiTrac-LEFFLER’S transcendental entire
function

(6) Boe)= 3 2"T(kx +f1),
k=0

where o> 0, then, as observed by W. FELLER [7],
(7) D'(— 1)"E(— )] =0 on (5) if 0 <o <1,

where D=d/dx and » =0, 1,... According to H. PorLrLarp [7],
FELLER'S original proof of (7) depended on (3), whereas PoLLARD
[7] applied contour integrations. But it turns out that if (7) is
granted, then (3) follows by direct formal work. In this sense, (3)
is equivalent fo (7). On the other hand, there will be given for
(7) a simple and elementary proof which does not involve anything
like (3) but merely a trivial change of integration variables (within
the real field).
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1. When taken out of its context, the first of the facts to be
proved can simply be formulated as follows: if

!

DI =

(8) b=

then the infinity of inequalities
sin (u?)
(x + u)*

9) du>0, where k=1, 2,...,

holds at every point x of the half-line (6}, whereas (9) is false (for
some positive x=uwx, and an appropriate k=k,) if b is any positive
index violating the assumption (8).

This sharp alternative becomes more instructive if it is looked
upon from the point of view of general StrieLTIES transforms

T a
(10) fo= [ 20

0

, Where diu)=0,

on the one hand, and of general LAPLACE-STIELTIES ftransforms

oo

(11) (@) = j e==du(t), where dy(t)=0,
0

on the other hand. First, it is clear that if Mu), where 0 < u < oo,
is any non-decreasing function corresponding to which the integral
(10) is convergent for some x> 0, then (10) is a convergent
integral for every x>0, and that the function filx) which is
then defined by (10) on the open half-line (5) is totally mono-
tone, i.e.,

(12) (— D)y*f(x) =0 on (5) for n =0, 1,...,

where D = d/dx. The converse is not true, the standard example
being the fanction f(z)=e—*; in fact, it is well-known that to this
f there does not belong any X satisfying (10), although (12) is obviously
satisfied. According to the HAUSDORFF-BERNSTEIN theorem (cf.
[6], p. 281), a function f(x), given on (), will possess derivatives
of arbitrarily high order satisfying (12) on (5) if and only if there
exists on the closed half-line 0 < ?<{coa non-decreasing function
«(t) in terms of which it is possible to represent f(x) on (5) in the
form (11), the convergence of the integral (11) for every x>0
being part of the statement (note that w(co) <<oco is sufficient, but



STABLE DISTRIBUTIONS AND THE TRASFORMS OF STIELTJES AD LE ROY 27

not necessary, to this end). In particular, the class of functions
f(x) on (3) which satisfy (12) or (11) is more inclusive than the
class of functions (12).

All of this together confains an explanation of the situation
claimed above for (9). In order to see this, notice first that if g(f),
where ¢ <t <oo, is any positive, monotone function satisfying
g{oc) = 0, then the integral

f g(t)sin ¢ di
c

is convergent. Hence the substitution {—u® shows that the integral

o0

. sin (#?)
(13) H,,(m): fm du
0

is convergent at every x>0 whenever b >0, and that the same
is true of the integrals which result from (13) by successive formal
differentiations. It is also seen that »n formal differentiations of
(13) lead to the #x-th derivative of the function H,(x) (which,
therefore, has derivatives of arbitrarily high order for every x>0).
Consequently, (9) holds on (5) for those and only those values of
b > 0 for which (12), where » =k — 1, is satisfied by f= H,.

Accordingly, the assertion. to be proved, is that the function
(13) on () 4s or ¢s mot totally monotone according as its (positive)
index b does or does not satisfy the limitation (8). In other words,
flx) = H,(x) is representable on (5) in the form (11) if and omly if
(8) is satisfied. In contrast, for no value of b is f(x) = H,(x) of the
form (10). In fact, although (13) has the form of a STIELTIES
transform (10), with

(14) dA(u) = sin (u’)du, where 0 < u < oo,

the proviso, d\(u) = 0, of (10) is violated by (14) whenever &> 0.
Hence the assertion follows from the uniqueness theorem of the
transform (10).

2. The proof of the italicized assertion of Section 1 will depend
on the connection between (1) and (4), which can be formulated as
follows (cf. [8]): If @ and b is a pair of reciprocal positive numbers,
ie.,

(15) ab=1, (@>0, b>0),
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then
(16) F () = 2= '—2G,(x—*) on ().

Since the half-line (5) goes over into itself if x is replaced by x°,
where ¢ is any non-vanishing real number, (16) is equivalent to

(17) Go(x) = ="~ F,(x—?) on (5).

The replacement of the line —oco<<ax <<oo by the [open] half-line
(b), which is supertluous in (1) but not in (4), involves no loss, since
(1) is an even function [and since (1) remains continuous at the
end-point of (5), with

oo

(18) F (+ 0)= F,(0) :[ exp(—t)di=T(1+a)>0
0
for every a > 0].

In order to verify (16), apply to (1) a partial integration (at a
fixed x£>0) so as to differentiate the factor exp(—#¢). This leads to

Fle)=a 1t“ exp (— %)
/

sin xt

g dt.

If this identity is multiplied by « and if the integration variable
t is replaced by sb/x, Wwhere x(> 0) is fixed and b(> 0) is defined
by (15), it is seen that
el (x) =2 f exp (— a%s) sin (s®)dt.
b
In view of the definition (4), this is equivalent to (16).
It follows that

(19) Gyx) =0 on (5) if and only if b > %

In fact, it is clear from (16) and (15) that (19) is equivalent to the
statement that

(20) Fox) =0 on (5) if and only if o < 2.

Buat (20) is precisely LEvy’s result (3) and its converse, the existence
of an x, > 0 satisfying (2) if @ > 2; cf. (18).

Incidentally, the sign of equality cannof occur for F,(x) in (20)
or, equivalently, for G,(x) in (19). But this will not be needed in
what follows
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3. It is well-known that, subject to the proviso that the order
of the two integrations involved can be interchanged, the LAPLACE
transform of the Larrace transform of a function is the STIELTIES
transform of the latter. In fact, if > 0, the interior integral on
the right of the formal identity

o0 oo

(21) me“’” [ / e—“g(s)ds] dt :0 f g(s)[ 0/ e"“e’“dt} ds

0 0
is fe—l"dt:y—l, where y =« + s> 0. But it is readily verified
)
that (21) is applicable at every x>0 if g(s)=sin(s®), where b>0.
On the other hand, the definitions (13) and (4) show that the
repeated integral on the right of (21) and the interior integral
on the left of (21) then become H,(x) and G,(x) respectively.
Consequently, the identity

o0

22) Hym) = [ =Gt on (5)
0
holds for every b > 0.

If b > 0 is replaced by the stricter assumption (8), then it is
seen from the first assertion of (19) that the integral (22) is of the
form (11), the proviso dp(f)=0 of (11) being equivalent to G,(t)=>0
(almost everywhere). Since (12) is a trivial consequence of (11) on
(5), this proves that (12) is satisfied by f(x) = H,(x) whenever the
value of the index b is limited by (8).

Conversely, if b has any (positive) value violating the limitation
(8), then the second assertion of (19) shows that (22) violates condition
du(f) =0 of (11). It follows therefore from the uniqueness theorem
of LAPLACE’S transform on the one hand and from the existence
statement of the HAUSDORFF-BERNSTEIN theorem on the other
hand that (12) cannot be satisfied by f(x) = H,(x) if b is any index
violating (8).

This completes the proof of the italicized statement of Section
1. i.e., both the necessity and the sufficiency of (8) for the truth
of (9) on the whole of (5). [In the limiting case k=0, excluded
in (9), the situation is trivial but different. For if k=0, then
the inequality (9) reduces to

(o ¢}

(23) [ sin (u?)du > 0
0
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(for every x). But (23) is true only if (8) is sharpemned fto b >1,
while the integral (23) is divergent if 0 << b < 1. The integral (23)
is summable to 0 in the limiting case b —=1 and acquires a negative
Abelian value

e o]

lim | e~ sin (ub)du
e—s0

‘when b passes from 6> 1 to b <1].

4. In order to deal with (7), the starting point can be that
integral identity for (6) which is the starting point of Mirrac-
LerrLER’S representation of the analytic continuation (if any) of
power series. It is the following representation of the kernel of
CavucnY’s integral formula :

1—}2, — f B (212t
0
(cf., e.g., [B], pp. 77-83 and pp. 190-191). Here ¢ is real, « is positive,
while 2z, instead of being arbitrary as in (6), is either within the
unit circle or in the half-plane to the left of the imaginary axis.
In particular, (24) is valid on the half-line — co <2 < 0. This
means that

(24)

oo

(25) / e—tEy(— at?)dt = (1 + x)—*

if, as always in the sequel, x varies on the open half-line (5).
Actually, the verification of (25) from the definition (6) is
straightforward indeed (cf. [3], p. 42), since the legitimacy of the
necessary term-by-term integration follows for trivial reasons.
It is also quite trivial that successive formal differentiations of
(25) are legitimate (whenever « > 0 and « > 0). This means that,
ifn=0,1,..,

o0

(26) [ e~ tnaD" B (— xtx)dt = n !/ (1 + x)*+,

0
where the D refers to the differentiation of E,(#) with respect
to #z itself (even though z = — x{).

Corresponding to (15), let
=1 (x>0, §>0)

and replace ¢ and x in (26) by s=uaPt and y — x~B respectively
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(it being understood that x>0 is fixed when ¢ is replaced by s).
Then (25) appears in the form
yon+i / e~ vsgnaD"Eo(— s¥)ds = n ! [ (1 + y—o)* ),
0
where y > 0 is arbitrary.

5. Since
(yan l-l)_l ya——l

Ty = [Ty

the last relation can be written in the form

o

(27) f e~=tfma D (- taydt =
0

m! o1
(1 + xy,)ﬂl:"’]

if the letters y, s and » are changed to x, { and m respectively.
Accordingly, (27) is an identity on (5) whenever « >0 and m =0,
1, ...
It will now be supposed that

(28) 0<a< 1.

Then successive differentiations make it obvious that (12) is satisfied
by f(x)=x*—" as well as by f(x) = (1 + 2*)~'. On the other hand,
the binomial rule of differentiation shows that if (12) is satisfied
by f=g and by f=nh, then it is satisfied by the product f= gh
as well. Hence, if the latter rule is applied m + 1 fimes, then,
since m! is a positive constant, it follows that, for every « satisfying
(28) and for every fixed m (=0, 1, ..), the infinity of inequalities
(12) holds for the function f(x) which is the quotient on the right
of (27).

It now follows from the HaAUSDORFF-BERNSTEIN theorem that
(for fixed values of « and m) the function (27) possesses on (5) a
representation (11). But the uniqueness fheorem of LAPLACE-
StieL1IEs transforms assures that the HAUSDORFF-BERNSTEIN
representation (11) of the quotient f(x) on the right of (27) must
be identical with the integral on the left (27). Hence, comparison
of the two integral representation shows that, since dA\(f)=>0 in (11),

(29) D"E,(— t#)=0, where 0 < ¢ < co.

But the D was introduced, in (26), as the symbol denoting the
differentiation of E,(z) with respect to z. It follows therefore
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from «> 0 that (29), where (28) is assumed and m =0, 1, ..., is
equivalent to FELLER’S result (7), where » =0, 1, ..., since the D
of (7) was defined to be d/dwx.

6. In view of the HAUSDORFF-BERNSTEIN theorem, (7) is
equivalent to the following assertion: Corresponding to every «
satisfying (28), there exists on the closed half-line 0 <¢{< oo a
monotone function 2,(#) for which

(381) Ey—2)= [ e==id)\,(t), where d\(t) >0,
0

is an identity on (5). It is easy to conclude from the preceding
deduction that a more immediate way of defining the function
Aif?) is the following identity on (5):

00
r

2~-1
LA ) e==tD,(t)dt,
G

(32) 1+ xn
where (28) is assumed and D, denotes the LeERoY transform of
Ao, 4.€.,

oo

(33) Dy(x) = [exp(— 278)d4(?)
0

(in this connection, cf. the comments of F. BERNSTEIN [1], pp. 50-51,
on the significance of LERoY’S transformation for the problem at
hand).

As seen above, (12) is satisfied by the function f(x) which is
the quotient on the left of (32). Hence this f(x) must possess a
HAUusDORFF-BERNSTEIN representation (11). What (32) accomplishes
is the determination of the dA in (11), as follows: di(f) = D,(f)d¢
(which, in view of the inequality in (11), implies that the function
(33) is non-negative). — Note that the function on the left of (31)
is a transcendental entire function, whereas the function on the
left of (32) is elementary. Thus the reducibility of (31) to (32) is
along the lines of the considerations of F. BErNSTEIN and DoxrscH
[3], transforming transcendental into elementary relations (even
though a convolution equation of VoLrERrA’s type, instead of
merely a transition from LaprLace’s to LeRoY’s transform, is
employed in [3], pp. 41-43).
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If m =0, then (27) reduces to

271 v
(34) 1—1—x—a = /8_xtEa(— ta)dt.
0

Bat if ), is defined by (31), then (34) shows that the assertion (32),
to be verified, is equivalent to
{35) Eo(— %) = D).

Finally, the definition (33) shows that (35) is equivalent to (31).
In view of (1), it is worth mentioning that, under the assum-
ptions (28) and (5),

~

p KLr—1 .
(36) o = | Judes 00,
where
(37) T, ) == [ exp (— @ — tus)du .
0

In fact, (36) follows from (32), (33) and (37) by an application of
FuBINT'S theorem.

The Johns Hoplkins University.
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