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Stable distributions and the transforms
of Stieltjes and Le Boy.

Nota di ATJREL. WINTNER *f (a Baltimora, Md.)

Siinto. - Sfruttando un cïassico risultato di P. LÉVY suïla teoria dei pro-
cessi stocastlci, vengono shtdiate alcune proprietà di certe tras formas iont
di STIELTJES e di LE ROY e ne vengono faite varie applicasioni.

Summary - A resuit of P. LÉVY, whick is nom classical in the theory of
stochastic p7'ocesses, states that CAUCHY'S transcendent, defined by for-
mula (1) below, does not attain négative values for real x if and only
if the (positive) index a of (\) does not exceed the value (a = 2) belonging
to a normal distribution. It is shown that appropriate transformation s
of this fact lead to curions results concerning the total monotony of
certain STIELTJES and LE ROY transforms. There follows, among other

Sj a simple direct proof of a resuit of W. FELLER on MITTAG-
Hù-functions, and an addttional proof o f LÉVY'S result is

a by-product, along with a connection of all these facts with the con-
sidérations of I1. BERNSTEIN and Gr. DOETSCH on certain TOLTERRA
transforms.

INTRODUCTION. - If the unit of leugth. is suitablj chosen, then,
according to CATJCHY [4], pp. 99-LOI, any symmetrie «stable» density
of probability is determined by the FOXJRIER transform of one of the
functions exp (— \t \a), where a is a positive constant. In view of
FOTJRIER'S inversion formula, this means that, if the corresponding
density of probability is denoted by Fa(x)jn, where — o o < x < o o ,
then Fa(x) must be of the form

(1) Fn(x) = ! exp ( - t*) cos xt dt
o

(for some a;>0). I t Avas assumed for a long time that this necessary
condition is sufficient as well. But (1) actually is a density of
probability if and only if

(2) Fa{x) < 0 for some x = xa

does not take place, and, while this was taken for granted by
OATJCHT for every a > 0, F. BERNSTEIN [2] observed that (2) happens
to be the case if a = 4 (and his method applies to every even integer
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a exceeding LAPLACE'S a = 2). The final resuit is due to P .
[6], who proved that

(3) Fa(x)^>Q for all x if 0 < a < 2 ,

and that (2) holds for every a > 2 (even if a/2 is not an integer).
It was observed in [8] that, for every a z> 0, CAUCHY'S transeen-

dents Fa(x) are closely connected with the transcendente Gb(x)
defined, for every b > 0, by the LAPLACE transforms

oo

(4) Gb(x) = I e~xs s in {sb)ds

o

(which, of course, are convergent for

(5) 0 < x < oo

or Re x > 0 ) , and that the functions Gb(x), in turn, are connected
with standard entire functions occurring in the analytic continuation
of power series beyond the circle of convergence ([8], p. 681). The
purpose of the present note is to put (4) and its connection wi th
(1) to explicit use in various directions, and thus to dérive a few
curious relations which prove to be equivalent to (3) and to the
sufficiency of a ;> 2 for (2).

Actually, there will also resuit an additional proof of LÉVY' S

fondamental resuit (3) itselL In this regard, the situation is as
follows : If EJz) dénotes MITTAG-LEFFLEB ' S transcendental entire
functiou

(6) EM= 2

where a > 0, then, as observed by W. F E L L E R [7],

(7) £»[(_ l)"Ea(— x)]>0 on (5) if 0 < a < l ,

where D ~ d/dx and n ~ 0, 1,.... According to H. POLLARD [7],
FELLEK'S original proof of (7) depended on (3), whereas POLLARD

[7] applied contour intégrations. But it turns out that if (7) is
granted, then (3) follows by direct formai work. In this sensé, (3)
is equivalent to (7). On the other hand, there will be given for
(7) a simple and elementary proof which does not involve anything
like (3) but merely a trivial change of intégration variables (within
the real field).
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1* When taken out of its context, the first of the f acts to be
proved can simply be formulated as foliows : if

(8) 6 ^ | ,

then the infinity of inequalities

= l , 2,...,

holds at every point x of the half-line (5), whereas (9) is false (for
some positive x^^xb and an appropriate h = hx) if b is any positive
index violating the assumption (8).

This sharp alternative becomes more instructive if it is looked
upon from the point of view of gênerai STIELTJES transforms

(10) f(x)=[^l, where d\(u)^0,

on the one hand, and of gênerai LAPLACE-STIELTJES transforma

(11) ƒ(») = j er^d^t), where d(i.(t)2>0,
o

on the other hand. First, it is clear that if X(w), where 0 <1 u < oo,
is any non-decreasing function corresponding to which the intégral
(10) is convergent for some x > 0, then (10) is a convergent
intégral for every x > 0, and that the function / \x) which is
then defined by (10) on the open half-line (5) is totally mono-
tone, i.e.,

(12) ( - D ) Y W ^ Ö on (5) for n = 0, 1,...,

where B — d/dx. The converse is not true, the standard example
being the function f(x) — e~x; in f act, it is well-known that to this
f there does not belong any 1 satisfying (10), although (12) is obviously
satisfied. According to the HAUSDOKFF-BERKTSTEIN theorem (cf.
[5], p. 281), a function f(x), given on (5), will possess derivatives
of arbitrarily high order satisfying (12) on (5) if and only if there
exists on the closed half-line 0 ^ ^ < o o a non-decreasing function
p(t) in terms of which it is possible to represent f(x) on (5) in the
form (11), the convergence of the intégral (11) for every x > 0
being part of the statement (note that [4°°) < ° ° is sufficient, but
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not necessary, to this end). In particular, the class of functions
f(x) on (5) which satisfy (12) or (11) is more inclusive than the
class of functions (12).

Ail of this together contains an explanation of the situation
claimed above for (9). In order to see this, notice first that if g(t),
where c <L t <c oo, is any positive, monotone f anction satisfying
£(oo) = 0, then the intégral

oo

ƒ g(t) sin t dt

is convergent. Hence the substitution t=ub shows that the intégral

(13) Hb(x)= —±^du
o

is convergent at every x > 0 whenever b ;> 0, and that the same
is true of the intégrais which result from (13) by successive formai
differentiations. It is also seen that n formai differentiations of
(13) lead to the w-th derivative of the function Hb(x) (which,
therefore, has derivatives of arbitrarily high order for every x ;> 0).
Consequently, (9) holds on (5) for those and only those values of
b > 0 for which (12), where n = k—1, is satisfied by f=Hb.

Accordingly, the assertion, to be proved, is that the function
(13) on (5) is or is not totally monotone according as its {positive}
index b does or does not satisfy the limitation (8). In other words,
f(x) = Hb(x) is representable on (5) in the form (11) if and only if
(8) is satisfied. In contrast, for no value of b is f(x) = Hb(x) of the
form (10). In fact, although (13) has the form of a STIELTJES

transform (10), with

(14) d\(u) = sin (ub)du, where 0 ^ u < oo,

the proviso, d\(u) 2> 0, of (10) is violated by (14) whenever b > 0.
Hence the assertion follows from the uniqueness theorem of the
transform (10).

2, The proof of the italicized assertion of Section 1 will depend
on the connection between (1) and (4), which can be formulated as
follows (cf. [8]) : If a and b is a pair of redprocal positive numbers,
i.e.,

(15) ab^l, (a>0, 6>0),
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then

(16) Fa(x) = x-l~aGö{x-a) on (5).

Since the half-line (5) goes over into itself if x is replaced bj xc,
where c is any non-vanishing real number, (16) is equivalent to

[L() urb[X) — X J? a[X ) On (Oj.

The replacement of the line — cx3<x<oo by the [open] half-line
(5), which is superfluous in (1) but not in (4), involves no loss, since
(1) is an even function [and since (1) remains continuous at the
end-point of (5), with

oo

(18) Fa{ + 0) = Fa(0) = ƒ exp ( - t*)dt = r (1 -+- a"1) > 0
o

for every a > 0].
In order to verify (16), apply to (1) a partial intégration (at a

fixed x>0) so as to differentiate the factor exp(—ta). This leads to

Fa(x) = a f ta exp (— ta) — at.
J xt
o

If this identity is multiplied by x and if the intégration variable
t is replaced by sb/x, W'here x{> 0) is fixed and b(^> 0) is defined
by (15), it is seen that

f
xFa(x) = x~a J exp (— x~as) sin (sb)dt.

o

In view of the définition (4), this is equivalent to (16).
It follows that

(19) Gb(x)^>0 on (5) if and only if b^ | .

In faet, it is clear from (16) and (15) that (19) is equivalent to the
statement that

(20) Fa(x) 2> 0 on (5) if and only if a ̂  2.

But (20) is precisely LÉVY'S result (3) and its converse, the existence
of an xa > 0 satisfying (2) if a > 2 ; cf. (18).

Incidentally, the sign of equality cannot occur for Fa(x) in (20)
or, equivalently, for Gb(x) in (19). But this will not be needed in
what follows
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3. I t is well-known that, subject to the proviso that the order
of the two intégrations involved can be interchanged, the LAPLACE

transform of the LAPLACE transform of a function is the STIELTJES

transform of the latter. In fact, if x > 0, the interior intégral on
the right of the formai identity

oo oo oo oo

(21) /"e-** f fe~tsg{s)ds\ dt = f g(s)\ f e-xte~tsdt\ ds
o u 0 0

00

is i e~ytdt = 2/—1, where y = x -+- s> 0. But it is readily verified
ü

that (21) is applicable at every x>0 if g(s) = sin(s&), where b > 0 .
On the other hand, the définitions (13) and (4) show that the
repeated intégral on the right of (21) and the interior intégral
on the left of (21) then become Hb(x) and Gb{x) respectively.
Consequently, the identity

00

(22) Hb(x) = f e-xtGb(t)dt on (5)
o

holde for every 6 > 0.

If b > 0 is replaced by the stricter assumption (8), then it is
seen from the first assertion of (19) that the intégral (22) is of the
forra (11), the proyiso d\^(t)^O of (11) being equivalent to ( T 6 ( £ ) > 0

(almost eyerywhere). Since (12) is a trivial conséquence of (il) on
(5), this proves that (12) is satisfied by f(x) = Hb(x) wrhenever the
value of the index b is limited by (8).

Conversely, if b has any (positive) value violating the limitation
(8), then the second assertion of (19) shows that (22) violâtes condition
d^(t)^O of (11). I t follows therefore from the uniqueness theorem
of LAPLACE'S transform on the one hand and from the existence
statement of the HAUSDORFÏ1 - BERNSTEIIST theorem on the other
hand that (12) cannot be satisfied by f(x) — Hb(x) if b is any index
violating (8).

This complètes the proof of the italicized statement of Section
1. i.e., both the necessity and the sufficiency of (8) for the truth
of (9) on the whole of (5). [In the limiting case k ~ 0, excluded
in (9), the situation is trivial but different. For if k = 0, then
the inequality (9) reduces to

(23) f sin(ub)du > 0
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(for every rr). But (23) is true only if (8) is sharpened to b > 1,
while the intégral (23) is divergent if 0 < b <11. The intégral (23)
is summable to 0 in the limiting case b = 1 and acquires a négative
Abelian value

oo

lim / e~SM sin (ub)du

when 6 passes from 6 >> 1 to b < 1],

4. In order to deal with (7), the starting point can be that
intégral identity for (6) which is the starting point of MITTAG-

I/EFFLER'S représentation of the analytic continuation (if any) of
power series. It is the following représentation of the kernel of
CAUCHY'S intégral formula :

oo

(24) ^~-B = ƒ er'Ea{Bt*)dt
o

(cf., e.g., [5], pp. 77-83 and pp. 190-191). Here t is real, a is positive,
while z, instead of being arbitrary as in (6), is either within the
unit circle or in the half-plane to the leffc of the imaginary axis.

In particular, (24) is valid on the half-line — oo < z << 0. This
means that

(25)
oo

f e-tEai— xt")dt = (!•+- x)

if, as always in the sequel, x varies on the open half-line (5).
Actually, the veri fication of ( 25 ) from the définition ( 6 ) is
straightforward indeed (cf. [3], p. 42), since the legitimacy of the
necessary term-by-term intégration follows for trivial reasons.
It is also quite trivial that successive formai differentiations of
(25) are legitimate (whenever a > 0 and x ;> 0). This means that,
if » = 0, 1, ...,

oo

(26) f e-H^D^ai—
ö

e a i ) = n
ö

Tvhere the D refers to the differentiation of Ea(z) with respect
to z itself (even though z = — xt*).

Correspondit^ to (15), let

ocp = 1 (a > 0, p > 0)

and replace t and x in (26) by s = xH and y = x~P respectively
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(it being understood that x > 0 is fixed when t is replaced by s).
Then (25) appears in the form

j e-
00

where y > 0 is arbitrary.

5. Since

the last relation can be written in the form

(27) / er^pnan^Eai- t*)dt = ^ ^ *
J (1 + * )

if the letters «/, s and w- are changed to cc, £ and m respectively.
Accordingly, (27) is an identity on (5) whenever a ;>0 and m = 0,

It will now be supposed that

(28) 0<«<l.

Then successive differentiations make it obvious that (12) is satisfied
by f(x) = x*—1 as well as by f(x) = (1-»-se*)"*1. On the other hand,
the binomial raie of differentiation shows that if (12) is satisfied
by f = g and by f =h, then it is satisfied by the product f ~ gh
as well. Hence, if the latfcer raie is applied m + 1 times, then,
since ml is a positive constant, i t follows that, for every a satisfying
(28) and for every fixed w&(=0, 1, ...)) the infinity of inequalities
(12) holds for the function f(x) which is the quotient on the right
of (27).

It now follows from the HATTSDORFF-BERNSTEIÏST theorem that
(for fixed values of a and m) the function (27) possesses on (5) a
représentation (11). But the uniqueness theorem of LAPLACE-
STIELÏJES transforms assures that the HATTSDORFF-BERTSTSTEIN

représentation (11) of the quotient ƒ (cc) on the right of (27) must
be identical with the intégral on the left (27). Hence, comparison
of the two intégral représentation shows that, since (A(£)^>0 in (11),

(29) BmEa{— t*) 2> 0, where 0 < t < oo .

But the JD was introduced, in (26), as the symbol denoting the
differentiation of E^z) with respect to 0. It follows therefore
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from <x>0 that (29), where (28) is assumed and m — 0, 1, ... , is
equivalent to FELLER'S result (7), where n = 0, 1, . . . , since the D
of (7) was defined to be d/dx.

6. In view of the HATJSDORFF-BERNSTEIX theorein, (7) is

equivalent to the following assertion: Corresponding to every a
satisfying (28), there exists on the closed half-line 0<^£<oo a
monotone function Xa(£) for which

oo

(31) Ea{— x) — f e-xtd\a{t), where dla{t) ̂  0,

o

is an identity on (5). It is easy to conclude from the preceding
déduction that a more immédiate way of defining the function
Xa(£) is the following identity on (5) :

( 3 2 )

where (28) is assumed and Da dénotes the LEHOY transfornt of

oo

(33) Da{x) = ƒ exp (— x*t)dkjt)

(in this connection, cf. the commenta of F. BERNSTEIN [1], pp. 50-51,
on the significance of LEROY'S transformation for the problem at
hand).

As seen above, (12) is satisfied by the function f(x) which is
the quotient on the lefi; of (32). Hence this f(x) must possess a
HATTSDOïtFF-BEitisrsTEî  représentation (11). What (32) accomplishes
is the détermination of the dA in (11), as follows : dX(£) = Da(t)dt
(which^ in view of the inequality in (11), implies that the function
(33) is non-negative). — Note that the function on the left of (31)
is a transcendental entire function, whereas the function on the
left of (32) is elementary. Thiis the reducibility of (31) to (32) is
along the lines of the considérations of F. BERNSTEIN and DOETSCH

[3], transforming transcendental into elementary relations (even
though a convolution équation of YOLTERRA' S type, instead of
merely a transition from LAPLACE' S to LEEOY'S transform, is

employed in [3], pp. 41-43).
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If m — 0, then (27) reduces to
oo

(34) r T ^ = I <r*'E*(-t*)dt.
b

But if Xa is defined bv (31), then (34) shows that the assertion (32),
to be verified, is equivalent to

Finally, the définition (33) shows that (35) is equivalent to (31).
In view of (1), it is Avorth mentioniug that, under the assum-

ptions (28) and (5),

(36) ^~ = j Ja(x, t)d\a(t),
0

where
oo

r
(37) Ja(x, t) — / exp (— xu — turJ)du .

ó
In fact, (36) follows from (32), (33) and (37) by an application of
FUBINI'S theorem.

The Johns Hopkins University.
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