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On certain polynomials associated with orthogonal polynomials.

Nota di Davip Dickinsox (U. of Mass., Amherst, Mass.) (¥)

Santo. - Si studia U ortogonalita, di certe classi di polinomi associati ad
alcuni classict polinomi ortogonali.

Summary. - This is a study of the orthogonality of some polynomials
associated with the classical orthogonal polynomials.

1. Introduction. — Classical orthogonal polynomials and their
corresponding functions of the second kind obey a recurrence
relation of the form

Rn(w) - (Au —+ an)Rn-—l(x) -+ Can—z(x) =0

with 4,4,,,C,> 0. By iterating this expression, one can obtain
for any three such polynomials (or functions of the second kind)
of arbitrary index the relation

Ay, s, )R, (x) + By s, t{x) B (x) + Cr, s, t(x)Rx) =0

where the A, s, ix), Br s, ix), and C. s x) are termed, after Pavama
[9], the associated polynomials. We shall study the implications
of the orthogonal type recurrence relation with the restriction
AnA,1C. > 0 replaced by the weaker restriction 4,C,3=0. We
shall show that the polynomials obeying this recurrence relation
are, along with their associated polynomials, orthogomal in a
restricted but readily constructable sense.

In this general setting, these polynomials have been studied
by NIeELSEN (1918) [8], HauN (1940) [5], and Panama (1953) [9].

2. Definition of the Associated Polynomials and a Contiguous
Relation. We shall consider polynomials obeying a recurrence
relation of the form

(1) pu(w) - (an —+ b,,x)p,,_l(x) + cnpn—’z(m) = 07 n= 17
where a,c¢,,,30 for =1 and
P (@) =0,
D) =1,

plx)y=a,x+b,.

(*) Presented to the American Mathematical Society, October 27, 1956,
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If we add to (1) the restriction a,a,,,c, >0, then (1) becomes
(FavarD [4]) a sufficient as well as a necessary condition for the
orthogonality of the {p,(x)!. However, our results do not require
that we place this restriction.

The polynomial set |pu(x)| associated with the set of polyno-
mials | p,(x)| we define to be the set obeying

2)  pul@) — (Gnyy + bups@)Pr—1(2) + Cnpypu_2@) =0, n=>1

where v is nonnegative and integral, ax4yCni14y =0 for n =1, and

v

p-1(x) =0

polx) =1
®) )

pi1(x) = a1y + b1

p%(x) = biybor® + (@1vboty + A24b11y)e — Coygy.
Tt is obvious that pa(@) = px().

After setting v=20 in (11), it will be apparent that the asso-
ciated polynomials so defined are indeed the associated poly-
nomials of the first paragraph.

‘We first obtain the contiguous relation (7) below.

The polynomial sets | p:,tll(w)( and | p:,t?g(ac)'t , except for the
initial conditions, when considered as functions of » and v satisfy
(2). Hence we have

@) Pal@) — (@niy + ppr@)Pr—1(®) + Cniypusf@) =0, n=>1,

(@) Pi@) — (@nts + bup@)pl o) + cnppit @) = 0, n=2,

(B)  PRHE) — (Gnts + Dups)Prl 3(#) + Cuppra@) =0, 0 =3.
Now let

i) = pi(a) — (@14 + brn@)pr (@) + capi @), s =1.

If we multiply (4) by — (@14++ + biyyx) and (5) by c2+, and add
the resultants to (2), we see that

(6) Bpu(@) — (Antv + buiy@)Pr_1(2) 4+ CntyPr—2(2) =0, n =>3.

But if we evaluate ®j(x) and ®jx) by using (3) We see that
they both vanish identically. Hence, from (6), ®.(x) is zero for
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all positive n. That is, (PAvamA [9], (18)),

) Pr(@) — (@1y —+ bL @)Dt + 2y y P (@) = 0, 0 =>1.

3. Relations Between the Associated Polynomials and the
Functions of the Second Kind. Let us first obtain a relation (11),
between any three orthogonal polynomials and their associated
polynomials.

From the expressions

(1) pale) — (@1py + bip@Pits(@) + c2pupil o) =0, n=>1,

® Pmf(@) — (@14 + b1+vx)p$_11(x) -+ ca_g_vp:,_fg(x) =0, m=>1,
let us eliminate (@14, + bir,x). We have then

(9) Prl)pin 1(@) — Pri(@)Pim(@) = Capo [ Pr iYoo) — Prta() D —1(x)].

The bracketed terms of this identity may be formed from the
left member by shifting the indices m, n, and v to m — 1, n —1,
and v + 1 respectively. Thus by iteration we may obtain

Dr@)Dim1(@) — PrEi@D (@) = CopoCa D s(@)Pom—s(@) — DA )D2()].

This iterative process may be continued until the polynomials
(with suitable superscripts) py@)=1 and p_,(®) =0 are obtained.
Let us assume that m =n. Then after iterating (» — 1) times, we
have, (PavAaMa [9], (16)),

, n
(10) pZ(x}p:,jfl(x) — phEi@)pin(a) = {'H1 Cu+1+z’] @), m=n=>1.
==

Between this expression and

n
pepitie) — phi@ple) = | [l o i), s=n=1
1=

we now eliminate p:.tll(x) and thus obtain
i) | P i) — P o] = 11 o] pileipn o) —
=

Pl )pf—“zil( )] , m, s=n=>1.

The bracketed terms of -the left member may be simplified if
we use the identity obtained by setting # —s in (10).
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Thus

8 n
oot [ B v o) = | H o] pioiph ) —
= 1=

P(@)pinti(a)

or

8 i 3 v
(1) [ o] ot ite) = Pl ) —

p@piinti@), m=s=n=>1,

a relation between any three polynomials of an orthogonal set
and their associated polynomials.

Let us next obtain a similar relation between any three
functions from a set of functions of the second kind whose indices
differ by integers. With each set of classical orthogomnal polyno-
mials |p,(x){ there is a set of functions of the second kind
{ g.(x)} than obey the same recurrence relation. Corresponding
to each set of classical polynomials satisfying (1) we have thus
for the associated polynomials and for the functions of the second
kind where v is integral
(1) Dh®) — (14 + bipr@)phli(@) + copupnidl@) =0, n=>1,
and
(12) Q41(®) — (@14y + b1p@)gy(@) + crpugy—i(x) =0, v=0.

If we eliminate (@1, -+ bi4,x) between these two identities, we
obtain an expression

Pr(®B(@) — 1P i(@)0-1®) = Prli@)-41(x) — c2pna(w) ()
that may be iterated as was (9). Hence
(13)  pu@(@) — cpnia(@g—1(®) = Gala), v=0, n>1.
By eliminating the terms involving ¢,—i(x) between (13) and
Prl®)0(®) — e P0G 1(®) = Gupmi®), v =0, m=>1,

‘Wwe arrive at

D@ Goon(®) — P A@) G- m(®) = @) Pr()pi-1(®) — i @) pm(®@)]-
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The bracketed expression may be simplified by the substitution
(10). This substitution leads to the desired identity:

(14) pEE«@%w«@)——pﬁinHmwﬂ:=[I5%+H4pﬁfih@MAm,
==
v>0, m=n>1.

4. «Finite» Orthogonality and the Lommel Polynomials.
From (10) we may write

v1 , " o vtnl
(15) xspv"(ac)g"zi-(w) = ac*p;[fl(x) -+ [ II cypayi Jm—pmv_—n—l@ , m=n=>>1.
Pm(® =1 Pml)

Now the second term of this right member is a rational fraction
with a zero at infinity of order 1 + % — s and hence its Laurent
expansion about zero is a descending power series whose initial
term involves a*—"—'. The series converges outside any circle
Tm,o that contains the zeros of p(x). If we integrate (15) around
the contour I, ,, the integral of the polynomial term of the
right member of (15) vanishes. The integral of the rational fraction
is zero when the residues at the origin are zero. Hence

v4+1 =0 for m=n>s=>0
(16) f wpi(@) 2 g 2

Pm() 0 for m>n=s=0.

m,y

Notice that the weight function for this orthogonality relation
can be constructed explicitly in a finite number of steps starting
with nothing more than the recurrence relation of the polynomial
set concerned.

Porraczex [10], working from the theory of continued fractions,
has developed a related form of finite orthogonality.

As an instance of this «finite » orthogonality let us consider
the modified Lommel polynomials

Ro(v, @) =().(20)" Fo( —1[2, (—n+1)/2; v, —m, L —v—n; —1/zf),
B_,(v, ®)=0,
By, ¢) =1,
B\(v, x) = 2va.

They satisfy the recurrence relation (see Warson [14])

Rn(v, z) — 22(v +n — )R, _ (v, ©) — B, (v, x) =0.
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From the recurrence relation and from the explicit expressions
for the first few polynomials it is obvious that for nonzero values
of the real parameter v, R,(v, ) is a polynomial in = of degree
precisely ». It has been shown in [2] and [3] that they are ortho-
gonal over a complex contour with respect to a quotient of BESSEL
functions.

Again, from the recurrence relation and from the explicit
expressions for the first few polynomials it is obvious that for
nonzero values of the real parameter x, R,(v, ) is a polynomial
in v of degree precisely #n. From (16) it follows that

/‘v R ( x) Rm—l(V+ 1, x) =0 for m>=n> 8220,
s (v, v+ 1, #)
Bty 2) £+ 0 for m=n=s=0.

o
Ty

where I'y, 5 is a contour in the v plane that contains those values
of v for which R (v, ) vanishes identically.

Now from Warson [14], § 9.65, as m approaches infinity,
R,.(v, ) approaches the quotient of a certain gamma function
and a certain BEsSEL function. By invoking this limit one would
like to construct a weight function in v for the polynomials
R, (v, ) that is independent of the size of %. This remains an
interesting problem.

5. The Orthogonality of the Associated Polynomials. From (13)
we may write

e

v Qv() -1
(17) p”( ) Qv—l(x) )

x Q—1(@) = CH-VP‘”—l(w) +

v>=>0, n=>0.

It is evident upon examination that (13) and (17) are true for
n=0.

Let us suppose that g,(x) satisfies (12) and has, perhaps for-
mally, an expansion in descending powers of « starting with
the term in #—v. Then the quotient gq,(x)/gy—(x) Will have, perhaps
formally, the representation

gy() ozo ma—i—1,
qv—-l (x) =0

The polynomials pn(x) may be written

[0 8}
pal@) = 3 pi*
k=
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where pﬁ:,)k: 0 for % <k. The left member of (17) then appears as

OO )
s 2 T =it = 33 pemlai—r.
i=0 k=0 =0 k=0

Now when the right member of (17) is expanded inte a series,
the coefficient of 7 is not zero when j — — % — 1, while the coef-
ficients will be zero for — % <<j << 0. In terms of the right member
of (18), we have then

4 0 for it=mn
% P +
=0 =0 for 0<<i<<n —1.

But this is precisely the condition that the polynomials p)
be orthogonal with respect to the moment sequence {m(")[

6. The Associated LEGENDRE Polynomials. The LEGENDRE poly-
nomials

P”()_(2n) 4 (_n 1—n 1—2n

1) ’—T;T;”_’)’ n=0

and the LEGENDRE functions o}f'the second kind

(n!)2re—"—1 n+1 n+2 2n+3 «
Q.(x) = Gn+1)! 2 1( 5 9 5 B} ;w—z), n=0

both satisfy the recurrence relation
B, (x) — b,2R,_ (@) + ¢, B,_,(x) =0, n=>=1
b,=2n —1)/n, =1
e, =n—1)n, n>1
¢, =1
provided we set Q_,(x) =1 and P_,(x)=0.

Denoting the associated LEGENDRE -polynomials by P,(, ),
we have, from (17),

(19) ®P.(, a:) Qv( )——Cl—l-y(c‘.Pn—l(V “+ 1, o)+ w—;?j—z;(;)w), v=0, n=>0.

The residues at the origin of the right member are zero for
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0 << s <<n and the residue in not zero if s — n. Since the LEGENDRE
functions of the second kind have neither poles nor zeros outside
the unit circle, we may integrate (19) around a contour I that
includes the unit circle and so obtain the residues at the origin.

That is,
P Qu®) & =0 for 0<s<mn
s x
(v, ) Qy—1(x) #+0 for s=mn.

T
For the ordinary LEGENDRE polynomials we have

=0 for 0<<s<m

[wSP"(x)Qo(w)dx { 40 for s =mn.

i

Let us now proceed to an explicit representation of the asso-
ciated LEGENDRE polynomials.

The LEGENDRE polynomials P,(x) satisfy an expression of the
form (12) so that we may, from (13), write

P,v, €)Py(x) — c14yPna(v + 1, 0)P, (%) = Pyp1ylx), v=0, n=1.

Between this and (13) in the LEGENDRE polynomial and function
form,

P,(v, )Qyx) — c1vPr—ilv + 1, 2)Qy—1(0) = Quis(®), v=0, n =1,
we may eliminate P, (v + 1, ). We thus obtain

_ Pup @)@, —1(%) — Py —1(x) Qs i)
P”(v, x) - Pv(w)Qv —1(93) — Pv__l(w)Qv(a:) ’

v=>0, n>1.

But, from Hosson [7], § 45, (76), this denominator is, for v=>=1,
merely v—*. If we consider the numerator as the difference between
two LAURENT expansions, we see that only one of the LAURENT
expansions has nonnegative powers of a present. That is, pu(v, x)
must be v times the polynomial terms of Py, (*)Q,1(x). Hence we
have

©0) Py, z)= 12 [i] S (= n—v)ei—2idv)ord ) =0.

1), 20 e (—r v+ 1)2) k(v+ 12— ) k1

The case v—=0 may be verified by setting v=0 in the right
member of (20) and using the fact that (0),, is one if k=0 but
is zero otherwise.
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For some properties of the associated LEGENDRE polynomials,
see HUMBERT [6]. Some properties of the associated HERMITE
polynomials have been worked out by VarmMa and MITRA in a
sequence of papers that are listed in Varma [13]. Also, see
AL-Savam [1]. Toscano [12] and Pavnami [9] have found further
properties and have developed some relations for the associated
LAGUERRE polynomials as well. None of these papers consider
the orthogonality of the associated polynomials.
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