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On the non-negativity of solutions of the heat equation.
Nota di RicEARD BELLMAN (a Santa Monica - California)

Sunto. - Viere wmosirato come una combinagione di classici teoremi di
esistenza e unicita e di metodi relativi a differenze finite fornisce una
semplicissima dimostrazione di non negativitad delle soluzioni dell’equa-
zione del calore. )

Suminary. - It is shown that a combination of classical existence and
uniqueness theorems and finite difference techniques yields a very simple
proof of non-negativity.

1. - Introduction.

In treating a functional equation, once the question of exi-
stence and uniqueness has been disposed of, we turn to a more
precise study of the analytic character of the solution. It fre-
. quently happens that a method which works very efficiently to
establish existence and uniqueness does not yield other properties
of the solution in any ready fashion. Conversely, methods which
yield non-negativity, convexity, and so forth, may not be ideally
suited for the establishment of the basic properties. However,
a combination of several techniques may yield the results we
desire quite easily.

illustrate these remarks, let us consider the heat equation

Wy —= Ugy + q[a:, t)u’s
) (@, 0) =ola), 0<z =<1,
(0, {) =wu(l, {) =0, t >0.

‘We shall assume that we have demonstrated, by some means
or other, the existence of a solution which depends continuously
upon v(x) in the L*-norm for $>=0, and that this solution is uni-
que. As we shall see, a method based upon finite differences will
enable us to demonstrate the fact that this solution is non-nega-
tive for ¢ =0, provided that it is non-negative at ¢ =0, i.e. pro-
vided that vlx)=0, for 0 <<ax<<1. On the other hand, the parti-
cular proof used to establish existence and uniqueness may not
have yielded non-negativity in a simple fashion, and, as is
known, an existence and uniqueness proof based upon finite dif-
ferences is not a completely simple matter.
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20 0 U= Uy s
To illustrate our ideas, begin with the simpler equation
) U = Wy
and consider the difference scheme
(@)  wx, ¢+ 3%/2)=[wlx + 3, ) + w(x—3, {)])/2,

@) ‘ '
(b)  wlx, 0)= (),

where « takes the values 3, 23,.., 1, and { assumes the values
0, 8%2, 8, ... The function w(x, #) is defined by linearity at
non-lattice points. v

It is easy to see that, formally, the recurrence relation ap-
proaches the partial differential equation as & — 0.

As mentioned above, a rigorous proof that the solution of (a)
converges to the solution of (1) as 8 — 0, starting from first prin-
ciples, 'is non-trivial. However, as we shall see below, a proof
of this fact is quite simple, once we have established the existence
" and uniqueness of a solution. The fact that w(x, {) is non-nega-
tive for any 3 >0 is immediate, and this yields the conclusion
that u(x, t)=0.

Since we have assumed the existence of a solution of (1)
which is a continuous function of »(x), there is no loss of gene-
rality in assuming, for our current purposes, that »(x) possesses
appropriate continuity properties, sufficient to ensure that

(3) .Nll:za’x [I Uy 1) l: l Warwa ma |] < m < oo,

where R is the bounded region 0 <<x<C1, 0<<i<< T <<oco. We
may for example take v(x) to be a trigonometric polynomial. Un-
der the assumption of (3), it is easy to show that in R

4 lim  w(x, {) =u(x, ).
§—0

‘We have, by virtue of (2)
(5) u(x, t+ 3%/2) = [u(x + 3, t) + u(x — 3, 1)]/2 + 3r(x, ),

where |7(x, {)|<<2m in R. Consequently, the function z(x, {)=
= w(x, t) — u(x, ) satisfies the recurrence relation of (la) with
the initial condition z(x, f) = 0. Let

(6) dty= Max |wix, t) — u(x, )|
<<l

34
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Using the recurrence relation, we see that
7 d(t + 8%/2) << d(f) + 28¢m
for t =0, 8%/2, 8%, ..., whence
8) d(t) < 28'mN
for 0 <<t <C3N. Let 3N = T. Then
(9 d(t) < 2%®mT

for x and ¢ in R.

From this, we obtain the desired result as & — 0.

Note that we can also conclude from the foregoing result that
u(x, t) is concave in x for any value of ¢ if v(x) is concave in .
This, in turn, implies that u(x, {) is decreasing in ¢ for each fixed
value of x.

3. - w, = u,, + g(x, thu.

To extend the same argument to the general equation of (1.1),
we employ the recurrence relation

w(a + 9, ) + wx — 3, t)+

wx, t+ 32) = 5

(1)

x4 q(x, 1)82/2

[ nly, vay.
x— q(x, t)82/2

If we assume that g(x, {)=0 for 0 <<ax <1, =0, the recur-
rence relation above shows that w(x, {)=0 for all * and £ The
proof that w(x, f) converges to ufx, £) as 3 — 0 follows the same
lines as before.

To see that it is sufficient to assume that

(2) g, )= —2r>—o00, 01, 0=t T,
for any T> 0, where A =X(T), we proceed as follows. Write
8) u=e— My,

Then the equation of (1.1) becomes

@ 0y = + (g, )+ N,



ON THE NON-NEGATIVITY OF SOLUTIONS OF THE HEAT EQUATION 523

with the same boundary conditions. The new function

(6) 9, 1) = qlz, §) -+ A

is non-negative.

4. - Generalizations.

It is clear that the same method may be employed to obtain
corresponding non-negativity results for the solution of the heat
equation for higer dimensions and arbitrary regions. The essential
part of the proof is the & priori demonstration of the existence
and uniqueness of a solution depending continuously upon the
initial values, in an appropriate metric.

Similary, a number of corresponding results can be established
for various classes of non linear equations.



