BOLLETTINO UNIONE MATEMATICA ITALIANA

CARLO PUCCI

A proposito di un teorema riguardante la misura di involucri di insiemi.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 12 (1957), n.3, p. 420–421.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1957_3_12_3_420_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

A proposito di un teorema riguardante la misura di involucri di insiemi.

Nota di Carlo Pucci (a Roma)

Sunto. - Si corregge la dimostrazione di un teorema precedentemente pubblicato.

Summary. - Correction of the proof of a theorem previously published.

Sia X un insieme dello spazio euclideo E_n , ad n dimensioni sia X_{ρ} , $\rho > 0$, l'insieme dei punti di E_n che distano da X meno di ρ . Indichiamo con $\mathcal{F}X_{\rho}$ la frontiera di X_{ρ} , con $f(\rho)$ la misura secondo, Lebessue di X_{ρ} ; poniamo

$$\bar{\mu}(X) = \lim_{\rho \to 0} \frac{f(\rho)}{2\rho}, \qquad \underline{\mu}(X) = \lim_{\rho \to 0} \frac{f(\rho)}{2\rho}.$$

Se $\bar{\mu}(X) = \mu(X)$, X è misurabile secondo Minkovski e $\mu(X)$ indica la sua misura.

Fissato comunque un insieme limitato X in E_n , eccettuato un insieme di valori di ρ di misura nulla, per $\rho>0$ risulta $f(\rho)$ derivabile, $\mathfrak{F}X_{\rho}$ misurabile secondo Minkovski e

$$f'(\varphi) = \mu(\mathcal{F}X_{\varphi}).$$

La dimostrazione di questo teorema data in una precedente nota (¹) non è corretta come mi ha fatto gentilmente osservare MARTIN KNESER che mi ha pure indicato il seguente procedimento.

Sia x_2 un punto con distanza x positiva dall'insieme X. Associamo ad ogni punto x_2 esterno ad X un punto x_0 di $\Im X$ con $x_2\overline{x_0}=x$. Fissato un numero λ maggiore di 1 indichiamo con x_1 il punto del segmento di estremi x_0 e x_2 tale che $\lambda \overline{x_1x_0}=x$. Indichiamo con y_2 un altro punto esterno ad X ed analogamente con y_0 il suo associato su $\Im X$ e con y_1 il punto del segmento di estremi y_2 e y_0 tale che $\lambda \overline{y_1y_0}=\overline{y_0y_2}$. M. KNESER ha provato che

$$(1) x_2 y_2 \leq \lambda x_1 y_1 (^2).$$

Fissato un numero positivo ρ se x_2 varia nell'insieme $X_{2\lambda\rho-\rho}-X_\rho$ il corrispondente punto x_1 varia in un certo insieme L e dalla (1) segue che la corrispondenza così stabilita fra i due insiemi è biunivoca. Si osserva facilmente che $L \subset (\mathfrak{F}X_\rho)_{\rho-\frac{\rho}{\lambda}}$ e quindi per la (1)

$$f(2\lambda \rho - \rho) - f(\rho) \leq \lambda^n \text{ misura } (\mathfrak{F}X_{\rho})_{\rho = \frac{\rho}{1}}.$$

Dividendo primo e secondo membro per $2(\lambda-1)\rho$ e facendo tendere λ ad 1 se esiste $f'(\rho)$ si ottiene

$$f'(\rho) \leq \mu(\mathcal{F}X_{\rho}).$$

Come è già stato osservato nella nota indicata in (1) $f(\rho)$ ha quasi ovunque derivata per $\rho > 0$ e

$$f'(\rho) \geq \overline{\mu}(\mathfrak{F}X_{\rho});$$

pertanto il teorema è provato e così rimane valida la dimostrazione del teorema successivo.

⁽¹⁾ Alcune proprietà degli involucri, « Rend. Acc. Lincei » (8); 20 (1956), pag. 297.

⁽²⁾ MARTIN KNESER, Uber den Rand von Parallelkörpern « Math Nachr.» 5, (1951) pag. 251.