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On applications of the Sehwarzian derivative

in the real domain.

Nfota di AUREL WINTNER (Baltimore, IL S. A.)

Sunto. - JBy making use of the formai circumstance that the Sehwarzian
(associated with a homogeneous, linear differential équation of second
order) can be written in the form o f a Biccatian, il is shown that
certain earlier resuit s of the author, concerning disconjugacy on the
one hand and the existence of totally monotone solutions on the other
hand, can be transferred from RICCATI'S résolvent to SCHWARZ'S
résolvent in the real field.

1» If f(t) is a regular function on a simply-connected domain
J of the complex £-plane, then the classical connection (RLEMAISTN ;
SCHWARZJ POINCARÉ) between the schlicht conformai transforma-
tions of J, the linear differential équation

(1) X" -4- f(t)X = 0,

and its « Sehwarzian résolvent » (KLEIN)

(2) [s] = 2f(t).

where

(2 bis) • rs] = s'"/s' — 3s"2/2s/2,

is as follows [1]:

On the one hand, the quotient

(3) . s(t)=x(t)/y(t)

of any two (linearly independent) solutions, x ~ x(t) and y — y{t),
of (1), and only a function s(t) of the form (3), is a solution of the
non-linear differential équation (2) (which implies that. the gênerai
solution of (2) results from any given solution s = s(t) of (2) by a
projectire transformation

(4) s — (as -+- b)l{cs -H d), ad
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where the three intégration constants, required by the order of
(2), are represented by a : b: c: d). On the other hand, a solution
(and so, in view of (4), every solution) of (2) is a schlicht function
s(t) on J if and only if the differential aquation (1) happens to
have the property that none of its solutions x~x{t) has more than
one zero on J. In the nomenclature customary today in the real
field (cf. [4], p, 228), the latter property of (1) is the disconjugate
character of (1) on J. Hère and in the sequel, the solution x(t) of
(1) which vanishes identically is not considered to be a solution
of (1).

In the real field (where J becomes an interval), various crite-
ria are known for the disconjugate character of (1) on J. But it
is easy to see that the above-quoted classical connections, being
of a substantia]Jy formai nature, can be transcribed to the real
field (to this end, it is on]y necessary to replace schlicht behavior
with what in § 2 will be called œ-monotony). This suggested the
following considérations in which, however, the main point will
be a striking formai parallelism between the Schwarzian résol-
vent, (2), of (1), with (3), and the Biccatian résolvent,

(5) r' + *•* = — f(t)}

of (1), with

(6) r(t) = x'(t)lx(t);

cf. (5) and (6) with (7) and (8) below. Owing to this formai paralle-
lism, which not even for the complex field seeras to have been fully
exploited in the literature (even though it was observed by KLEII^

and, undoubtedly, already by L I E ; cf. [5], p. 154), it will be
possible to obtain for (2); (8) results corresponding to the results
of [7] and [6] on (5), (6).

2« On the line of the real variable t. let J be a (bounded or
unbounded) interval which will be assumed to be op en, and let
s(t) be any rea]-valued function, distinct from -+- OO and — oo at
the ^-values considered, which is defined and continuous at every
point t with the possible exception of one point, say t^t0, of J.
If there is an excepted t0, dénote by Jt and J2 the open intervals
(with Jt to the left of J%) into which J is divided by £0, and call
the function oo-monotone on J if it satisfies the following three
conditions: s(t) is strictly monotone on JL as well as on J2 ;. no
value s attained on JL is attained on J2 ; finally, either s{t0—-0) =
-+- oo and s(t0 H- 0) — — oo or s(tQ — 0) = — oo and s(t0 -+- 0 ) = -h oo.
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Clearly, a real projective transformation can introducé a point
t0 but preserves the oo-monotony of a given s(t) on J. The same
préservation holds for any given degree (= n) of continuous diffe-
rentiability (class C") it' the C^-character of s{t) is defined to be
the existence of a continuous n-th derivative on JL H- J2 or on J
according as the oo-monotone function s(t) does or does not have
an excepted point tQ on J.

Let f(t) be a real-valued, continuous function on J", consider
only real-valued solutions of the corresponding differential équa-
tions (1), (2) (and (5), of order 2, 3, and 1 respectively), and debar
the constant 0 as a solution of (1). Then it is readily seen from
the définition of oo-monotony and from the proof of the classical
connection, referred to in § 1, that one half of that connection
can be transcribed to the present case as follows :

(i) Some (or, since the rule (4) is valid, every) solution s(t) of
(2) is vo-monotone on J if and only if (1) is disconjugate on (1).

The remaining half, (ii) below, of the real version of the classi-
cal connection must be approached with caution, since, if f(t) is
just continuous (class C°), then all solutions, x[t) and s{t), of (l)
and (2) will be just of class C' and C3 respectively, whereas (the
differential operator (2 bis) being of third order) the solutions
of (2) do not ap'pear to be representable in the for m (3). But this
appearance is misleading :

(ii) A function (on J or on Ji-4-J2J is a solution of (2) if and
only if it is representable as the quotient (3) of two, linearly inde-
pendent, solutions of (1).

The apparent paradox is eliminated if it is observed that)
although neither the numerator nor the denominator of (3) is of
class C3 (when f(t) is just continuousf, their quotient (3) is of class
C3 by necessity (*). This is readily verified from their C2-charac-
ter and from the fact that their Wronskian is a non-vanishing
constant.

(*) The situation is the same (i. e., (3) must be of class C3) even if (1)
is generalized to

(1*) 0!"+0(Q«'•+-ƒ(*)«! = 0,

where g[t), like f(t), is just continuous on J. In fact, the Wronskian of
the numeratov and the denominator of (3) is then a non-vanishing con-
stant multiple of exp G-(t), where G(t) is the indefinite intégral of — g(t)
and, therefore, a function of class C1.

What is a complication when (1*) is not in its normal form (!) is that (2)
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3. It is seen from (2 bis) that (2) can be written in the form

(7) u 'H-** = -ƒ(*) ,

where

(8) u = — g s 7s .

In fact, ^ [s] — u ' -+- u% is an identity in t by virtue of (8) and (2

bis) alone (i. e., without the inyolvement of a linear differential
•équation (1) or a coefficient function ƒ). In other words, if \ \ dénotes
the EICCATI operator,

(9) I l = ' + 8

{so that (5) and (7) become ) r | -h / (£) = 0 and \ u\ +-f(t) = O respec-
tively), then the définition (2 bis) of LAGRANGE'S operator is equi-
valent to

(10) 2[ ] = | L' I - 3L, where L = (log)'

(in factj u ~ — o Ls\ by (8), while (0) means that r = Lx).

4. Needless to say, the same proviso is needed for the formu-
lation (7) of (2), with (8) and (3), as for the formulation (5) of (1),

must then be generalized to

(cf., e. g.j [5], p. 142), ̂ vhereas ihe right-hand side of (2*) is meaningless
"when g(t) is just continuous. But this can be helped, either by reducing
{1*) to the normal form (1} (which is possible, since the relevant multiplier,
"being the function exp G(t)f% is of class Cl) or else, without any change
of the independent — or, for that matter, of the dependent — variable,
by transcribing (2-) into the interval relation

w w

i-1* bis) J[s(t)]dt = ƒ | if(^ - 0i(*)/2 \dt-\ g(w) - g(v) | ,
V V

v^here (v, w) is any pair of points on J.
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with (6), since only such ^-intervals mast be considered as are
free of zéros of the respective denominators, s'(t) and x(t\ of (8)
and (6). But the proviso needed for (7)-(8) turns out to be the
précise analogue of the trivial proviso needed for (5)-(6) :

(iii) If f(t) is real-valued and continuons on J, and if x —x(t),
x = y(t) is an arbitrary pair of Unearly independent solutions of (1),
then no solution u = u|t) of the formulation (7)-(8) of (2) becomes
infinité at more than one point t,, — to(u) of J if and only if (1) is
disconjugate on J.

(iii*) JjT'(l) is disconjugate on J, then it is always possible to
choose the Unearly independent sohitions x(t), y(t) of (1) in (3) in
such a way that both the denominator (== y) of the solution (3) of
(2) and the denominator (= s') of the correspoïtding solution (8) of
(7) will stay positive {^=0) on the whole of J.

For. since the Wronskiaii of x(t) and y(t) is a non-vaiiishing
constant, (8) and a differentiation of (3) show that the zéros of
y(t) are identical with the infinities u{t).- Hence (iii) follows from
(i)-(ii), and (iii*) from the existence theorem (JACOBI) which in [7]
was used as the central fact concerning a differential équation
(1) disconjugate on an open interval J".

5. Since (7) is the same differential équation as (5), except
that (6) is replaced, via (8), by (8), it follows from (iii) that the
results of [7] on the disconjugacy of (1), results which were there
there obtained on the basis of the (trivial) r-analogue of the
^fr-criterion (iii), can now be expressed in terms of the solutions
of (2).

In particular, the result of [7], pp. 375-376,, on the case in
which (1) is non-oscillatory (for large positive t) and has a coeffi-
cient function for which the improper intégral

OO i

I f[t)dt = ïim (f{t)dt exists

(it need not converge absolutely), eau now be interpreted as pro-
perties of the solutions (8) of the formulation (7) of (2), rather than
(loc. cit.) as properties of the solutions • (6) of the formulation (5)
of (1).
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6. As another application of the same principle of transfer,
the following resuit on a priori intégrations of (2) by means of
LAPLACE transforms of non-negative mass distributions will now
be proyed :

(iv) For large positive t, let f(t) be a function of class C00 satis-
fying the HA."LTSDORFF-BER^TSTEIJST conditions

(11) ( - D ) Y W ^ O for -w = 0, 1, ... {D = ')

and rendering the differential équation (1) non-oscillatory. Then
there exist a sufficiently large t0 and a solution s(t) of (2) in: such
a way that, on the half-line (t0, oo), the function s(t) results by the
two consécutive quadratures assigned by

oo

(12) — D2 log s(t) = ! e~tvdu.(v),
b

where \J*(V) is a certain non-decreasing function (d\j. >̂ 0) on the •
closed half-line 0<^v<oo, and the convergence of the intégral (12)
on the half-line (t0, oo) is part of the assertion. (Front such a
particular solution s(t), the gênerai solution of (2) results by a pro-
jective transformation (4)).

The assumptions imposed by (iv) on f(t) are not eontradictory.
For instance, if f(t) = (2t)"i, then (11) is satisfied on (0, oo), and (1)
possesses the pair of non-oscillatory solutions x = t1k, y =?!? logt
(so that, according to (3) and (4), the gênerai solution s(t) of (2) is
an arbitrary projective transforni of log t). More generally, if
/"(^=r(C/̂ )2, where C is a positive constant, then (1) is non-oscilla-

tory if and only if C does not exceed - (cf., e. g., [4], p. 283),

whereas (11) is satisfied for every C. The proof of (iv) proceeds
as follows :

It was proved in [6] that if f(t) satisfies (11) for large t and is
such as to render (1) non-oscillatory, then there exist a sufficiently
large t0 and a solution x(t) of (1) in such a way that the corres-
ponding RICCATI ratio (6) will be representable on (t0, oo) as a
definite intégral (12) in which \t.(v), where 0<|><oo, is a certain
non-decreasing function. Bat (6) is a solution of (5). On the other
hand, (5) is the same differential équation as (7j. Since (7) is identical

with (2) by virtue of (8 , this proves (iv). The (positive) factor ^
Ci

in (8) can be thought of as absorbed by the du* (> 0) of (12).
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