Bollettino
 Unione Matematica Italiana

Aurel Wintner

On the local uniqueness of the initial value problem of the differential equation
 $d^{n} x / d t^{n}=f(t, x)$.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 11 (1956), n.4, p. 496-498.

Zanichelli
http://www.bdim.eu/item?id=BUMI_1956_3_11_4_496_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

[^0]
On the local uniqueness of the initial
 value problem of the differential equation $d^{n} x / d t^{n}=f(t, x)$.

Nota di Aurel Wintner (Baltimore, U. S. A.)

Sunto. - The unaqueness theorem of Nagumo-Perron is extended to the initial value problem of the differential problem mentioned on the title.

Let R be a rectangle of the form $(0<t \leqq a,-b \leqq x \leqq b)$ and, if R_{0} denotes the (t, x)-set which results if the point (0,0) is adjoined to R, let $f(t, x)$ be a real-valued function which is continuous and bounded on R_{0}. Then, if $t^{0}>0$ is sufficiently small, the differential equation

$$
\begin{equation*}
d x / d t=f(t, x) \tag{1}
\end{equation*}
$$

and the initial condition $x(0)=0$ possess at least one solution $x=x(t)$ on the interval $0 \leqq t \leqq t^{0}$. In order that this solution be unique on some interval $0 \leqq t \leqq t_{0}$, where $0<t_{0} \leqq t^{0}$, it is sufficrent to assume that $f(t, x)$ satisfies the inequality

$$
\begin{equation*}
\left|f\left(t, x^{\prime}\right)-f\left(t, x^{\prime \prime}\right)\right| \leqq\left|x^{\prime}-x^{\prime \prime}\right| / t \tag{2}
\end{equation*}
$$

whenever (t, x^{\prime}) and $\left(t, x^{\prime \prime}\right)$ are in R.
This uniqueness theorem of Nagumo (cf., e. g., [1], pp, 97-98, and, for an interesting refinement due to Levy, [2], pp. 46.47) was extended by Perron to systems, that is, for the case in which the x and f of (1) are vectors with real components (cf. [1], pp. 139-141). Hence, if x and f are scalars and $f(t, x)$ satisfies the preceding conditions but (1) is replaced by

$$
\begin{equation*}
d^{2} x / d t^{2}=f(t, x) \tag{3}
\end{equation*}
$$

then, corresponding to every real constant c, there will exist a sufficiently small $t_{0}=t_{0}(c)>0$ having the property that (3) and the initial condition $\left(x(0), x^{\prime}(0)\right)=(0, c)$, where $x^{\prime}(t)=d x(t) / d t$, will possess just one solution $x(t)$ on the interval $0 \leqq t \leqq t_{0}$. In fact, if (3) is written as a (binary) vectorial system (1), then one component of the vectorial f will be a linear function, while its other component will be the (sealar) f of (3). But it turns out that the trivial nature of one of the components induces the possibility of a substantial improvement of the conditions (2) imposed on the (scalar) f of (3).

The possibility of such an improvement was suggested by a dynamical consideration. In fact, if (3) is interpreted as the equat-
ion of motion of a particle (of unit mass) moving along the x-axis, then it is natural to expect that the factor $1 / t$, occurring in the restriction (2) of the variation of the (non-conservative) force $f(t, x)$, can be improved to a factor of the order of $1 / t^{2}$. It will be shown that this is actually the case, since the uniqueness assertion for (3) remains true if the denominator t is replaced by $t^{2} / 2$ in (2). The corresponding result for a differential equation of n-th order is as follows:

If $\mathrm{f}(\mathrm{t}, \mathrm{x})$ is real-valued and continuous on R_{0} and if

$$
\left|f\left(t, x^{\prime}\right)-f\left(t, x^{\prime \prime}\right)\right| \leqq n!\left|x^{\prime}-x^{\prime \prime}\right| / t^{n}
$$

holds whenever ($\mathbf{t}, \mathrm{x}^{\prime}$) and ($\mathbf{t}, \mathrm{x}^{\prime \prime}$) are in R , then, corresponding to any set of real constants c_{1}, \ldots, c_{n-1}, there exists a positive t_{0} having the property that the differential equation

$$
\begin{equation*}
D^{n} x=f(t, x) \quad(D=d / d t) \tag{5}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
x(0)=0, \quad D x(0)=c_{1}, \ldots, \quad D^{n-1}(0)=c_{n-1} \tag{6}
\end{equation*}
$$

cannot possess more than one solution $\mathrm{x}=\mathrm{x}(\mathrm{t})$ on the interval $0 \leqq t \leqq \mathrm{t}_{0}$.

It will be clear from the proof that the theorem remains true if x, f and $c_{0}=0, c_{1}, \ldots, c_{n-1}$ are vectors.

Let $x=x^{\prime}(t)$ and $x=x^{\prime \prime}(t)$ be two (possibly identical) solutions $x(t)$ of (5) and (6) on $0 \leqq t \leqq t_{0}$, where $t_{0}>0$. Then both $x^{\prime}(t)$ and $x^{\prime \prime}(t)$ have continuous n-th derivatives (since $f(t, x)$ is continuous at $(t, x)=(0,0)$ also), and $D^{h} x^{\prime}(0)=D^{k} x^{\prime \prime}(0)$ holds not only for $k=0,1, \ldots, n-1$ but for $k=n$ also, as seen by placing $t=0$ in (5). Hence, if $u(t)=x^{\prime}(t)-x^{\prime \prime}(t)$, and if $v(t)$ denotes 0 or $u(t) / t^{\text {sb }}$ according as $t=0$ or $0<t \leqq t^{0}$, then $v(t)$ is continuous for $0 \leqq t \leqq t^{0}$.

Next, if $x(t)$ is any solution of (5) on $0 \leqq t \leqq t^{0}$, then

$$
x(t)=p(t)+(n-1)!^{-1} \int_{0}^{t}(t-s)^{n-1} f(s, x(s)) d s
$$

where $p(t)$ is that polynomial of degree $n-1$ (at most) which is determined by the n initial conditions $D^{h} p(0)=D^{h} x(0)$, where $k<n$. Hence $p(t)$ is the same for $x(t)=x^{\prime}(t)$ as for $x(t)=x^{\prime \prime}(t)$. It follows therefore, by subtraction, that $x^{\prime}(t)-x^{\prime \prime}(t)=u(t)$ satisfies the inequality

$$
|u(t)| \leqq n \int_{0}^{t}(t-s)^{n-1}|u(s)| s^{-n} d s
$$

since (4) is assumed. In view of the definition of $v(t)$, this inequality can be written in the form

$$
\begin{equation*}
|v(t)| \leqq n t^{-n} \int_{0}^{t}(t-s)^{n-1}|v(s)| d s \tag{7}
\end{equation*}
$$

(if $t \neq 0$).
The balance of the proof is substantially the same as in the case, $n=1$, of Nagumo. In fact, as pointed out above, $v(t)$ is continuous for $0 \leqq t \leqq t^{0}$ and vanishes at $t=0$. Hence the same is true of $w(t)$, if $w(t)$ denotes 0 or the maximum of $|v(s)|$ for $0<s \leqq t$ according as $t=0$ or $t>0$ (but $t \leqq t^{0}$). But the assertion is the existence of a sufficiently small positive $t_{0}\left(\leqq t^{0}\right)$ luaving the property that $x^{\prime}(t)-x^{\prime \prime}(t)$ vanishes identically on the interval $0 \leqq t \leqq t_{0}$. Since $w(t)$ denotes the maximum of $\left|x^{\prime}(s)-x^{\prime \prime}(s)\right| / s^{n}$ on the interval $0 \leqq s \leqq t$ if $t>0$, and since $w(+0)=w(0)=0$, it follows that it is sufficient to prove that $w(t)=$ const. holds on $0 \leqq t \leqq t_{0}$ if $t_{0}>0$ is small enough.

Suppose, if possible, that $w(t)=$ const. is false on $0 \leqq t \leqq t_{0}$ for every choice of $t_{0}>0$. Then, on the one hand, $w(0)=0$ implies that $w(t)>0$ holds for every positive $t\left(\leqq t^{0}\right)$ and, on the other hand, (7) shows that, since $w(t)$ is monotone,

$$
|v(t)|<n t^{-n} w(t) \int_{0}^{t}(t-s)^{n-1} d s
$$

holds for every positive $t\left(\leqq t^{0}\right)$. Since

$$
\int_{\theta}^{t}(t-s)^{n-1} d s=\int_{0}^{t} s^{n-1} d s=t^{n} / n
$$

this can be written in the form

$$
\begin{equation*}
|v(t)|<w(t), \text { where } 0<t \leqq t^{0} \tag{8}
\end{equation*}
$$

But it is clear from the definition of the (continuous) function w (in terms of the continuous function v) that (8) is possible only if

$$
\begin{equation*}
w\left(t^{*}\right)<w(t), \text { where } 0<t \leqq t^{0} \tag{9}
\end{equation*}
$$

holds for some point $s=t^{*}=t^{*}(t)$ of the interval $0<s \leqq t$, a point at which the maximum of $|v(s)|$ on $0<s \leqq t$ becomes $w\left(t^{*}\right)$ (in fact, $w(t)>w(0)=0$ if $t>0$). But since $w(t)$ is monotone, it is clear that $w\left(t^{*}\right)=w(t)$. Hence (9) contains a contradiction.

REFERENCES

[1] E. Kamke, Differentialgleichungen veeller. Funktionen, Leipzig, 1930.
[2] P. Levy, Processus stochastiques et mouveinent Brownien, Paris, 1948.

[^0]: Articolo digitalizzato nel quadro del programma
 bdim (Biblioteca Digitale Italiana di Matematica)
 SIMAI \& UMI
 http://www.bdim.eu/

