BOLLETTINO UNIONE MATEMATICA ITALIANA

DONATO GRECO

Sul problema di Lauricella per una particolare equazione del quarto ordine.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 11 (1956), n.3, p. 394–401.

Zanichelli

 $<\!\!\mathtt{http://www.bdim.eu/item?id=BUMI_1956_3_11_3_394_0}\!\!>$

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Sul problema di Lauricella per una particolare equazione del quarto ordine.

Nota di Donato Greco (a Napoli)

Santo. - Come nella prefazione.

In un lavoro attualmente in corso di stampa (1), e che qui indicherò con il riferimento [A], ho studiato il problema della derivata obliqua per alcuni sistemi di equazioni ellittiche del secondo ordine in due variabili ed in m funzioni incognite.

La presente Nota ha lo scopo di mostrare come i risultati conseguiti in [A] consentano di trattare il problema di Lauricella relativo ad un'equazione del quarto ordine a coefficienti costanti, che contenga le sole derivate quarte e non si riduca all'equazione $\Delta_4 u \doteq 0$, indipendentemente dalla teoria generale delle equazioni del quarto ordine a coefficienti variabili, ciò che per l'equazione delle funzioni biarmoniche è stato già fatto in vari modi.

Il procedimento, che presuppone acquisito il teorema di unicità per il problema di Lauricella (²), permette di stabilire molto rapidamente, e con considerazioni elementari, il teorema di esistenza portando altresì a riconoscere che la soluzione del problema stesso è sempre rappresentabile come somma di due opportuni potenziali di semplice strato.

1. Sia T un dominio del piano $x \equiv (x_1, x_2)$ che supporremo di classe $A^{(4,\lambda)}$ e semplicemente connesso, cioè limitato da una curva semplice e chiusa, di equazioni parametriche

$$x_1 = \varphi_1(s), \ x_2 = \varphi_2(s)$$
 [$x = \varphi(s)$]

riferite all'arco s, con le $\varphi_i(s)$ funzioni dotate di derivate quarte λ -hölderiane $(0 < \lambda \le 1)$ nel tratto $[0, \Lambda]$, se Λ è la lunghezza di $\mathcal{F}T$, le $\varphi_i(s)$ e le loro derivate dei primi quattro ordini riuscendo periodiche di periodo Λ . Supporremo che il verso delle s crescenti

- (1) D. Greco, Il problema di derivata obliqua per certi sistemi di equazioni a derivate parziali di tipo ellittico in due variabili. « Annali di Matematica pura ed appl. » (in corso di stampa).
- (2) E. E. Levi, I problemi dei valori al contorno per le equazioni lineari totalmente ellittiche alle derivate parziali, « Mem. Soc. It. dei XL », tomo 16 (1909), pp. 1-112.

sia quello positivo di percorso su FT ed indicheremo con n l'asse normale esterno, di coseni direttori $X_1(s)$, $X_2(s)$, con τ l'asse tangente orientato coerentemente.

Sia poi 2 un operatore differenziale lineare del quarto ordine a coefficienti costanti, che contenga le sole derivate quarte:

$$\mathfrak{L} = \sum_{h+k=4} A_h, \ _{h} \frac{\partial^4}{\partial x_1{}^h \partial x_2{}^h}$$

e sia di tipo ellittico, cioè tale che la forma quartica in due variabili

$$\Phi[t_1, t_2] = \sum_{h+k=4}^{\infty} A_{h,k} t_1^h t_2^h$$

risulti definita positiva.

Assegnate su $\mathcal{F}T$, due funzioni $f_1(x)$, $f_2(x)$ con $f_1(x) \in C_{\mathcal{F}}^{(1, \lambda)}$, $f_2(x) \in C_{\mathcal{F}}^{(0, \lambda)}$ ($0 < \lambda < 1$), ci proponiamo qui di applicare la teoria svolta in [A] allo studio del classico problema di Lauricella consistente nel determinare una funzione u(x) che riesca di classe $C^{(1)}$ in T, di classe $C^{(1)}$ in T- $\mathcal{F}T$, che verifichi l'equazione

$$\mathfrak{L}u = 0 \qquad \qquad per \ x \in T - \mathfrak{F}T$$

e le condizioni al contorno

(2)
$$u = f_1, \frac{du}{dn} = f_2 \qquad per \ x \in \mathcal{F}T.$$

2. La forma quartica Φ può ovviamente decomporsi nel prodotto di due forme quadratiche definite positive e, disponendo del fattore moltiplicativo a meno del quale è definito l'operatore \mathcal{C} , si può sempre fare in modo che tali forme quadratiche siano entrambe a discriminante unitario.

Alla decomposizione della forma Φ corrisponde una decomposizione dell'operatore $\mathfrak L$ in due operatori ellittici sovrapposti del secondo ordine a coefficienti costanti, contenenti le sole derivate seconde e, a meno di un cambiamento di variabili, si potrà sempre supporre che uno di tali operatori si riduca al laplaciano, cioè che riesca:

$$\mathfrak{L} = \mathfrak{M}\Delta_2$$

con

$$\mathfrak{M} = a_{\scriptscriptstyle 1},_{\scriptscriptstyle 1} \; \frac{\partial^{\scriptscriptstyle 2}}{\partial x_{\scriptscriptstyle 1}^{\scriptscriptstyle 2}} \, + \, 2a_{\scriptscriptstyle 1},_{\scriptscriptstyle 2} \; \frac{\partial^{\scriptscriptstyle 2}}{\partial x_{\scriptscriptstyle 1} \, \partial x_{\scriptscriptstyle 2}} \, + \, a_{\scriptscriptstyle 2},_{\scriptscriptstyle 2} \; \frac{\partial^{\scriptscriptstyle 2}}{x_{\scriptscriptstyle 2}^{\scriptscriptstyle 2}} \; ,$$

ove, come già detto, $a_{1,1}a_{2,2} - a_{1,2}^2 = 1$.

Orbene noi supporremo che riesca $\mathfrak{M} \neq \Delta_z$ cioè che *l'operatore* \mathfrak{L} non sia il quadrato di un operatore ellittico del secondo ordine.

Indicando allora, per ogni $x = \varphi(s) \in \mathcal{F}T$, con v l'asse conormale esterno associato all'operatore \mathfrak{M} , di coseni direttori:

396 DONATO GRECO

(3)
$$\xi_h(x) = [a_{h,1}X_1(x) + a_{h,2}X_2(x)]a^{-1}(x),$$

riesce, ovunque su $\mathcal{F}T$:

(4)
$$a(x) \cos (n, v) = a_{1,1} X_1^2(x) + 2a_{1,2} X_1(x) X_2(x) + a_{2,2} X_2^2(x)$$

ed inoltre:

(5)
$$a(x) \operatorname{sen}(n, \nu) = a_{1, 1} X_1^2(x) + (a_{2, 2} - a_{1, 1}) X_1(x) X_2(x) - a_{2, 2} X_2^2(x)$$

Dette $u_1(x)$, $u_2(x)$ due funzioni di classe $C^{(1)}$ in T, di classe $C^{(2)}$ in $T - \mathcal{F}T$, soluzioni, rispettivamente, delle equazioni

$$\Delta_2 u_1 = 0, \ \mathfrak{M} u_2 = 0,$$

e posto

(7)
$$u(x) = u_1(x) + u_2(x),$$

si ha allora

$$\Omega u = 0$$

e la u(x), definita dalla (7), è soluzione dell'equazione (1).

Proponiamoci allora di risolvere il problema (1)-(2) cercandone la soluzione nella forma (7). Osservando che, per essere τ ed n assi ortogonali si ha

$$\frac{du_2}{dn} = \frac{1}{\cos(n, \nu)} \frac{du_2}{d\nu} + \operatorname{tg}(n, \nu) \frac{du_2}{ds},$$

le condizioni al contorno (2) divengono

$$(8_1) u_1 + u_2 = f_1,$$

(8₂)
$$\frac{du_1}{dn} + \frac{1}{\cos(n, v)} \frac{du_2}{dv} + \operatorname{tg}(n, v) \frac{du_2}{ds} = f_2.$$

Pertanto determinare una soluzione del problema (1)-(2) rappresentabile nella forma (7) equivale a determinare una soluzione $[u_1(x), u_2(x)]$ del sistema di due equazioni (6) verificante le condizioni al contorno (8).

Procedendo come in [A], per tradurre il problema in un sistema di equazioni integrali si rappresenta la funzione incognita $u_j(x)$ mediante un potenziale di semplice strato:

(9)
$$u_{\jmath}(x) = \int G_{\jmath}(x, y) \zeta_{\jmath}(y) ds_{y}$$

$$FT$$

dove $G_1(x, y)$, $G_2(x, y)$ sono, rispettivamente, soluzioni fondamen-

tali delle due equazioni (6) $\fiveside{(6)}$. Assunte come incognite le due densità $\cline{\zeta_1(x)}$, $\cline{\zeta_2(x)}$ si riconosce allora che il problema (6)-(8) porta ad un sistema di equazioni integrali lineari delle quali la seconda è un' equazione a valor principale, mentre la prima è un' equazione tipo Fredholm ordinaria ma di prima specie. Ad un sistema siffatto non si applica la teoria generale dei sistemi di equazioni integrali a valor principale.

Per ovviare a tale inconveniente e poter tradurre il problema in un sistema di equazioni integrali a valor principale cui sia applicabile la teoria generale, in modo quindi che il problema di cui trattiamo rientri in quelli studiati in [A], basta modificare lievemente le condizioni al contorno (8) scrivendone la prima in modo diverso. Invero, avendo supposto $f_1(x) \in C_{\mathfrak{F}}^{(1,\lambda)}$ e dovendo le funzioni $u_1(x)$, $u_2(x)$ essere di classe $C^{(1)}$ in T, dalla (8_1) , per derivazione, si trae l'altra

$$\frac{du_1}{ds} + \frac{du_2}{ds} = \frac{df_1}{ds} .$$

Il problema al contorno relativo al sistema (6) ed alle condizioni al contorno (10) ed (8_2) viene così a rientrare in quelli studiati in [A] in quanto avendosi, con le notazioni [A],

$$p_{1,1} = p_{1,2} = 0, \quad p_{2,1} = 1, \quad p_{2,2} = \frac{1}{a \cos(n, \nu)}$$

 $\alpha_{1,1} = \alpha_{1,2} = 1, \quad \alpha_{2,1} = 0, \quad \alpha_{2,2} = \operatorname{tg}(n, \nu),$

il determinante che in [A] è stato indicato con D(x):

(11)
$$D(x) = \det || p_{h,k}(x) - i\alpha_{h,k}(x) || = -\frac{a \operatorname{sen}(n, \nu) + i[1 - a \operatorname{cos}(n, \nu)]}{a \operatorname{cos}(n, \nu)}$$
 non si annulla mai su FT (4).

(3) Si può porre

$$G_1(x, y) = \frac{1}{2\pi} \log \frac{1}{\overline{xy}}, G_2(x, y) = \frac{1}{2\pi} \log \frac{1}{\tau(x, y)},$$

essendo

$$\tau(x, y) = a_1, \, _1(x_2 - y_2)^2 - 2a_1, \, _2(x_2 - y_2)(x_1 - y_4) + a_2, _2(x_1 - y_4)^2.$$

Nel caso attuale, poichè le condizioni al contorno (8_2) — (10) non contengono le funzioni incognite $u_j(x)$, non occorre assumere come funzioni $G_j(x, y)$ le soluzioni fondamentali principali della (3), come è stato fatto in [4].

(4) Invero l'essere D(x) = 0, in un punto $x \in \mathcal{F}T$, implica che in x si abbia sen $(n, \nu) = 0$, $a \cos(n, \nu) = 1$, cioè $\nu = n$ ed a = 1. Tali condizioni implicando $\xi_k = X_k$, le quantità X_k si presentano allora, per le (3), come soluzioni di un sistema di equazioni lineari omogenee che, per essere $a_1, a_2, a_3 = 1$, ha determinante non nullo ed è quindi incompatibile con la relazione $X_1^2 + X_2^2 = 1$.

398 DONATO GRECO

Peraltro, essendo $p_{1,1} = p_{1,2} = 0$, il problema (6)-(10)-(8₂) rientra nel caso che in [A] è stato classificato come eccezionale.

Osserviamo ora che, per essere T di classe $A^{(4,\lambda)}$ e per la (4) riesce $p_{h,h} \in C_{\mathcal{F}}^{(3,\lambda)}$, $\alpha_h,h \in C_{\mathcal{F}}^{(3,\lambda)}$ onde del problema (6)-(10)- (8_2) si può considerare il problema aggiunto omogeneo. Tale problema, secondo la definizione che di esso si è data in [A], e per essere gli operatori (6) autoaggiunti, consiste nel determinare due coppie di funzioni $[v_1(x), v_2(x)], [\mathfrak{I}_1(x), \mathfrak{I}_2(x)]$ di cui le $v_1(x)$ definite in T, ivi di classe $C^{(1)}$ e di classe $C^{(2)}$ in $T-\mathcal{F}T$, le $\mathfrak{I}_1(x)$ definite su $\mathcal{F}T$ e di classe $C_{\mathcal{F}}^{(1)}$, in modo che le $v_1(x)$ siano soluzioni, in $T-\mathcal{F}T$, del sistema

$$\Delta_2 v_1 = 0, \quad \mathfrak{M} v_2 = 0$$

e verifichino le condizioni al contorno

(8')
$$\begin{cases} v_1 = -\mathfrak{I}_2, & v_2 = -p_{1, 2}\mathfrak{I}_2 \\ \frac{dv_1}{dn} = -\frac{d\mathfrak{I}_1}{ds}, a \frac{dv_2}{dv} = -\frac{d}{ds} \left[\mathfrak{I}_1 + \alpha_2, 2\mathfrak{I}_2\right]. \end{cases}$$

Il problema aggiunto omogeneo, così definito, è equivalente, come si è visto in [A], al sistema omogeneo trasposto del sistema di equazioni integrali a valor principale che traduce il problema (6)-(10)-(8).

3. L'espressione (11) si presta agevolmente al calcolo dell'indice κ del problema (6)-(10)-(8₂) il cui valore, determinato in [A], è

$$x = \frac{1}{\pi} \left[\arg D(x) \right]_{grT}.$$

Tenuto conto del fatto che la quantità $a\cos(n, v)$ è sempre positiva su $\mathcal{F}T$, posto

(12)
$$\xi(x) = a \operatorname{sen}(n, \nu), \quad \eta(x) = 1 - a \cos(n, \nu),$$

riesce

Il calcolo di x è dunque ricondotto a quello dell'ordine topologico dell'origine rispetto alla curva Γ descritta dalla variabile complessa

(14)
$$z(x) = \xi(x) + i\eta(x)$$

quando il punto x descrive $\mathcal{F}T$, una ed una sola volta, nel verso positivo.

Ora se si deforma con continuità FT anche Γ si deforma con continuità, ma in tale deformazione Γ non viene mai a passare per l'origine in quanto, come si è già visto, è sempre $D(x) \neq 0$. Ne segue che x si mantiene costante al variare di FT. Naturalmente bisogna supporre che FT varii mantenendosi sufficientemente regolare. In ogni caso però possiamo calcolare x supponendo che T sia la circonferenza unitaria γ , ciò che equivale ad assumere come variabili indipendenti le quantità X_1 ed X_2 . Con ciò le funzioni $\xi(x)$ ed $\eta(x)$ risultano definite, tramite le (4) e (5), in tutto il piano X_1 , X_2 e, avendosi $\mathfrak{M} \neq \Delta_2$, le equazioni

$$\eta = 0, \quad \xi = 0$$

rappresentano, nel piano X_1, X_2 , la prima un' ellisse σ e la seconda una coppia di rette ortogonali che coincidono con gli assi di σ. Detti ρ_1 e ρ_2 i semiassi, maggiore e minore, di σ , dalle ipotesi fatte sui coefficienti dell'operatore M segue $\rho_2 < 1 < \rho_1$ onde σ incontra la circonferenza unitaria γ in quattro punti distinti.

Diciamo P_1 , P_5 e P_3 , P_7 , rispettivamente, i punti d'intersezione di γ con gli assi, maggiore e minore, di σ , ed indichiamo con P_z , P_4 , P_6 , P_8 i punti comuni a γ ed a σ , ordinati in modo che nella permutazione fondamentale P₁..., P₈ i punti P₁ si seguano ciclicamente nel verso positivo su $\mathcal{F}T$.

Le funzioni η e ξ si annullano, cambiando segno, la prima nei punti P, d'indice pari e la seconda nei punti P, d'indice dispari, laddove su ogni arco di y limitato da due di tali punti conservano segno costante.

Ciò conduce subito a riconoscere che la curva Γ descritta dalla variabile complessa z, quando il punto x descrive una ed una sola volta y nel verso positivo su $\mathcal{F}T$, si riduce ad un contorno che si avvolge due volte attorno all'origine nel verso positivo. L'ordine topologico dell'origine rispetto a Γ è dunque 2 cioè la variazione dell'argomento di $\xi + i\eta \in 4\pi$.

Se ne deduce per l'indice x il valore

$$(15) x = 4.$$

4. Il numero x rappresenta la differenza tra il numero delle soluzioni linearmente indipendenti del sistema omogeneo associato al sistema integrale che traduce il problema (6)-(10)-(8,) ed il numero delle soluzioni del sistema omogeneo trasposto. Il primo di tali sistemi traduce, ovviamente, il problema omogeneo associato al problema (7)-(10)-(8,), definito dalle condizioni al contorno

$$\frac{du_1}{dn} + \frac{du_2}{dn} = 0, \qquad \frac{du_1}{ds} + \frac{du_2}{ds} = 0.$$

Ora, se $[\zeta_1(x), \zeta_2(x)]$ è una soluzione del sistema integrale omogeneo che traduce il problema (6)-(8"), le $u_i(x)$ definite dalla (9) forniscono, tramite la posizione i(7), una soluzione dell'equazione (1) verificante le condizioni al contorno

$$\frac{du}{dn} = 0, \quad \frac{du}{ds} = 0$$

dalla quale si trae:

$$\frac{du}{dn} = 0, \quad u = C, \quad \text{per } x \in \mathcal{F}T,$$

con C costante.

Dal teorema di unicità per le equazioni del quarto ordine (5) si deduce dunque:

$$(16) u_1(x) + u_2(x) = C, per x \in T.$$

Dalla (16) pertanto si trae che le soluzioni linearmente indipendenti del sistema integrale omogeneo danno luogo a soluzioni comuni alle due equazioni (6). La ricerca di queste ultime si effettua subito osservando che se si interpreta il sistema

$$\Delta_2 u = 0$$
, $\mathfrak{M} u = 0$

come un sistema lineare nelle incognite $\frac{\partial^2 u}{\partial x_1^2}$, $\frac{\partial^2 u}{\partial x_1 \partial x_2}$, $\frac{\partial^2 u}{\partial x_2^2}$, si trova:

(17)
$$\frac{\partial^2 u}{\partial x_1^2} = -2\rho a_{1,2}$$
, $\frac{\partial^2 u}{\partial x_1 \partial x_2} = \rho(a_{1,1} - a_{2,2})$ $\frac{\partial^2 u}{\partial x_2^2} = 2\rho a_{1,2}$

essendo ρ un fattore di proporzionalità. Dalle condizioni di compatibilità delle (17) segue $\frac{\partial \rho}{\partial x_1} = \frac{\partial \rho}{\partial x_2} = 0$, cioè $\rho =$ costante.

Se ne deduce, per la soluzione comune alle due equazioni (6), l'espressione generale:

(5) Cfr. Levi, loc. cit. in (2), pag. 55. Tale teorema di unicità è stato dimostrato da E. E. Levi considerando soluzioni del problema di classe $C^{(3)}$ in T. Ne segue che per applicare correttamente tale teorema bisognerebbe dimostrare che $u_1(x)$ ed $u_2(x)$ sono di classe $C^{(3)}$ in T. Per questo sarebbe sufficiente far vedere che le funzioni $\zeta_1(x)$ e $\zeta_2(x)$ sono di classe $C_{\overline{S}}^{(2)}$ e ciò potrebbe stabilirsi con un procedimento simile a quello seguito per la dimostrazione del teorema II di [A]. È appunto per stabilire questa proprietà di regolarità delle ζ_j che abbiamo supposto il dominio T di classe $A^{(4)}$. Ove invece il teorema di Levi valesse, come è presumibile, anche per le soluzioni di classe $C^{(1)}$ sarebbe sufficiente, per applicare il nostro procedimento, supporre che T sia di classe $A^{(3)}$.

(18)
$$u(x) = C_1 + C_2 x_4 + C_3 x_2 + C_4 P(x_1, x_2),$$

essendo $P(x_1, x_2)$ il polinomio di secondo grado

$$P(x_1, x_2) = a_1, {}_{2}(x_2^2 - x_1^2) + (a_1, {}_{1} - a_2, {}_{2})x_1x_2,$$

e le C_i quattro costanti arbitrarie.

Assunta, nella (16), per la funzione $u_1(x)$ l'espressione (18), si ha allora $u_2(x) = C - u_1(x)$.

Si conclude dunque che, il problema omogeneo (6)-(8") ammette cinque soluzioni linearmente indipendenti

$$\begin{array}{lll} u_1 = 0 & , & u_2 = 1 \\ u_1 = 1 & . & u_2 = 0 \\ u_1 = x_1 & , & u_2 = -x_1 \\ u_1 = x_2 & , & u_2 = -x_2 \\ u_1 = P(x_1, x_2), & u_2 = -P(x_1, x_2) \end{array}$$

le quali, potendo sempre rappresentarsi nella forma (9), provengono da cinque soluzioni linearmente indipendenti del sistema integrale omogeneo.

Pertanto il sistema integrale omogeneo ammette cinque soluzioni linearmente indipendenti e quindi, essendo l'indice x=4, il sistema omogeneo trasposto ammette una ed una sola soluzione non nulla. Tale soluzione è ovviamente rappresentata da

$$\mathfrak{I}_1 = 1, \quad \mathfrak{I}_2 = 0,$$

ed essa dà luogo, per il problema omogeneo aggiunto, alla soluzione nulla $v_1 = v_2 = 0$.

La presenza della soluzione (19) porta poi ad una sola condizione di compatibilità per il problema (6)-(10)-(8 $_2$) e questa è espressa da

$$\int_{\mathscr{F}T} \frac{df_1}{ds} \ ds = 0$$

ed è certo verificata nell'ipotesi, da noi posta, $f_1(x) \in C_{\mathfrak{F}}^{(1,\lambda)}$.

Si può dunque concludere asserendo che il problema (1) – (2) ammette una ed una sola soluzione la cui esistenza nell'ipotesi $f_1(x) \in C_{\mathfrak{F}}^{(1,\lambda)}$, $f_2(x) \in C_{\mathfrak{F}}^{(0,\lambda)}$, non è subordinata ad alcuna condizione di compatibilità.

Inoltre tale soluzione è sempre rappresentabile come somma di due potenziali di semplice strato.