Bollettino
 Unione Matematica Italiana

Leonard Carlitz

On Jacobi polynomials.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 11 (1956), n.3, p. 371-381.

Zanichelli
http://www.bdim.eu/item?id=BUMI_1956_3_11_3_371_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

[^0]Bollettino dell'Unione Matematica Italiana, Zanichelli, 1956.

On Jacobi polynomials.

Nota di Leonard Carlitz (a Durham, North Carolina)

Sunto. - Several results involving the Jacobr polynomials are obtained. in partıcular some formulas stated by Feldherm are proved.

1. In the notation of Szego [5, Chapter 4] the Jacobi polynomial may be defined by

$$
\begin{equation*}
P_{n}^{\alpha, \beta)}(x)=\sum_{n=r}^{n}\binom{n+\alpha}{n-r}\binom{n+\beta}{r}\left(\frac{x-1}{2}\right)^{r}\left(\frac{x+1}{2}\right)^{n-r} \tag{1.1}
\end{equation*}
$$

Thus P_{n} is a polynomial of degree n, not only in x, but also in each of α, β. Moreover it is an immediate consequence of (1.1) that

$$
\begin{align*}
& \Delta_{\alpha} P_{n}^{(\alpha, \beta)}(x)=\frac{x+1}{2} P_{n-1}^{(\alpha+1, \beta+1)}(x), \tag{1.2}\\
& \Delta_{\beta} P_{n}^{(\alpha, \beta)}(x)=\frac{x-1}{2} P_{n-1}^{(\alpha+1, \beta+1,}(x), \tag{1.3}
\end{align*}
$$

where

$$
\Delta_{\alpha} f(\alpha)=f(\alpha+1)-f(\alpha)
$$

Also we have [5, p. 62]

$$
\begin{equation*}
\frac{d}{d x} P_{n}^{(\alpha, \beta)}(x)=\frac{1}{2}(n+\alpha+\beta+1) P_{n-1}^{(\alpha+1, \beta+1)}(x) \tag{1.4}
\end{equation*}
$$

In view of (1.2) and (1.3) it is natural to apply formulas of finite differences to P_{n}; indeed Toscano [6] has derived some interesting results from the formula

$$
x
$$

$$
\begin{equation*}
F(-n, \gamma+\delta ; \gamma ; x)=\frac{(-1)^{n} \Gamma(\gamma)}{x \gamma \Gamma(\gamma+\delta)} \Delta_{\gamma}^{n} \frac{\Gamma(\gamma+\delta) x}{\Gamma(\gamma)} \tag{1.5}
\end{equation*}
$$

In the present note we discuss some simple results of a different nature.
2. In the first place we observe that if $f_{n}^{(\alpha, \beta)}(x)$ is a polynomial of degree n in x that satisfies

$$
\begin{equation*}
\frac{d}{d x} f_{n}^{(\alpha, \beta)}(x)=\frac{1}{2}(n+\alpha+\beta+1) f_{n-1}^{(\alpha+1, \beta+1)}(x) \tag{2.1}
\end{equation*}
$$

and we put

$$
f_{n}^{(\alpha, \beta)}(x)=\sum_{n=0}^{n}\binom{n}{r} C_{r}(x, \beta, n)\left(\frac{x-1}{2}\right)^{r},
$$

where $C_{r}(\alpha, \beta, n)$ is indipendent of x, then (2.1) yields the recurrence

$$
\begin{equation*}
n C_{r+1}(\alpha, \beta, n)=(n+\alpha+\beta+1) C_{r}(\alpha+1, \beta+1, n-1) . \tag{2.2}
\end{equation*}
$$

Repeated application of (2.2) leads to

$$
\begin{equation*}
C_{r}(\alpha, \beta, n)=\frac{(n-r)!(n+\alpha+\beta+1)_{r}}{n!} C_{0}(\alpha+r, \beta+r, n-r) \tag{2.3}
\end{equation*}
$$

If we assume also that

$$
\begin{equation*}
\Delta_{\beta} f_{n}(x)=\frac{x-1}{2} f_{n-1}^{(x+1, \beta+1)}(x) \tag{2.4}
\end{equation*}
$$

we find that

$$
\Delta_{\beta} C_{r}(\alpha, \beta, n)=C_{r-1}(\alpha+1, \beta+1, n-1)
$$

and in particular

$$
C_{0}(\alpha, \beta+1, n)=C_{0}(\alpha, \beta, n)
$$

Hence if C_{0} is a polynomial in β it is independent of β; we may write

$$
C_{0}(\alpha, \beta, n)=C_{0}(\alpha, *, n)
$$

Thus (2.3) implies

$$
\begin{equation*}
f_{n}^{(\alpha, \beta)}(x)=\sum_{r=0}^{n}\binom{n+\alpha+\beta+r}{r} C_{0}(\alpha+r, *, n-r)\left(\frac{x-1}{2}\right)^{r} \tag{2.5}
\end{equation*}
$$

Suppose now that in addition

$$
\begin{equation*}
f_{n}^{(\alpha, \beta)}(1)=\binom{n+\alpha}{n} \tag{2.6}
\end{equation*}
$$

then (2.5) gives

$$
C_{0}(\alpha, *, n)=\binom{n+\alpha}{n}
$$

and we get

$$
\begin{align*}
& f_{n}^{(\alpha, \beta)}(x)=\sum_{n=0}^{n}\binom{n+\alpha}{n-r}\binom{n+\alpha+\beta+r}{r}\left(\frac{x-1}{2}\right)^{r} \tag{2.7}\\
& =\binom{n+\alpha}{n} F\left(-n, n+\alpha+\beta+1 ; \alpha+1, \frac{1-x}{2}\right)
\end{align*}
$$

Hence $f_{n}^{(\alpha, \beta)}(x)=P_{n}^{(x, \beta)}(x)$. Thus if $\mathrm{f}_{\mathrm{n}}^{(x, \beta)}(\mathrm{x})$ is a polynomial in x and β, of degree n in x that satisfies (2.1), (2.4) and (2.6), then $\mathrm{f}_{\mathrm{n}}^{(\alpha, \beta)}(\mathrm{x})=\mathrm{P}_{\mathrm{n}}^{(\alpha, \beta)}(\mathrm{x})$. Similarly if $\mathrm{f}_{\mathrm{n}}^{(\alpha, \beta)}(\mathrm{x})$ is a polynomial in x and α, of degree n in x , that satisfies (2.1) and

$$
\Delta_{\alpha} f_{n}^{(\alpha, \beta)}(x)=\frac{x+1}{2} f_{n-1}^{(\alpha+1, \beta+1)}(x), \quad f_{n}^{(\alpha, \beta)}(-1)=(-1)^{n}\binom{n+\beta}{n}
$$

then $f_{n}^{(\alpha, \beta)}(x)=P_{n}^{(\alpha, \beta)}(x)$.
Incidentally, for the Laguerre polynomial

$$
L_{n}^{(\alpha)}(x)=\sum_{n=0}^{n}\binom{n+\alpha}{n-r} \frac{(-x)^{r}}{r!}
$$

We have the following result. If $\mathrm{f}_{\mathrm{n}}^{(\alpha)}(\mathrm{x})$ is a polynomial in x of degree n that satisfies

$$
\frac{d}{d x} f_{n}^{(x)}(x)=-f_{n-1}^{(\alpha+1)}(x), \quad f_{n}^{(\alpha)}(0)=\binom{n+\alpha}{n}
$$

then $\mathrm{f}_{\mathrm{n}}^{(\alpha)}(\mathrm{x})=\mathrm{L}_{\mathrm{n}}^{(\alpha)}(\mathrm{x})$.
3. It follows from (1.2) and (1.3) that

$$
\begin{gather*}
P_{n}^{(\alpha+1, \beta)}(x)-P_{n}^{(\alpha, \beta+1)}(x)=P_{n-1}^{(\alpha+1, \beta+1)}(x) \tag{3.1}\\
P_{n}^{(\alpha+1, \beta)}(x)-2 P_{n}^{(\alpha, \beta)}(x)+P_{n}^{(\alpha, \beta+1)}(x)=x P_{n-1}^{(\alpha+1, \beta+1)}(x) \tag{3.2}
\end{gather*}
$$

Repeated application of (3.1) gives

$$
\begin{equation*}
\sum_{r=0}^{k}(-1)^{r}\binom{k}{r} P_{n}^{(\alpha+k-r, \beta+r)}(x)=P_{n-k}^{(\alpha-k, \beta+k)}(x) \tag{3.3}
\end{equation*}
$$

and in particular

$$
\sum_{r=0}^{k}(--1)^{\cdot}\binom{k}{r} P_{n}^{(\alpha-r, \beta+r)}(x)= \begin{cases}1 & (k=n) \tag{3.4}\\ 0 & (k>n)\end{cases}
$$

It is also evident from (1.2) and (1.3) that

$$
\begin{aligned}
& \Delta_{\alpha}^{r} P_{n}^{(\alpha, \beta)}(x)=\left(\frac{x+1}{2}\right)^{r} P_{n-r}^{(\alpha+r, \beta+r)}(x), \\
& \Delta_{\alpha}^{r} P_{n}^{(\alpha, \beta)}(x)=\left(\frac{x-1}{2}\right)^{r} P_{n-r}^{(\alpha+r, \beta+r)}(x),
\end{aligned}
$$

and more generally

$$
\begin{equation*}
\Delta_{\alpha}^{r} \Delta_{\beta}^{s} P_{n}^{(\alpha, \beta)}(x)=\left(\frac{x+1}{2}\right)^{r}\left(\frac{x-1}{2}\right)^{s} P_{n-r-s}^{(\alpha+r+s, \beta+r+s)}(x) . \tag{3.5}
\end{equation*}
$$

In particular when $r+s=n$, (3.5) becomes

$$
\begin{equation*}
\left(\frac{x+1}{2}\right)^{r}\left(\frac{x-1}{2}\right)^{s}=\Delta_{\alpha}^{r} \Delta_{\beta}^{s} P_{r+s}^{(\alpha, \beta)}(x) \tag{3.6}
\end{equation*}
$$

which implies

$$
\begin{equation*}
x^{n}=\sum_{r=0}^{n}\binom{n}{r} \Delta_{\alpha}^{r} \Delta_{\beta}^{n-r} P_{n}^{(\alpha, \beta)}(x) \tag{3.7}
\end{equation*}
$$

It is clear that the formula

$$
f(\dot{\alpha}+\mu)=\Sigma_{r}\binom{\mu}{r} \Delta^{\prime} f(\alpha)
$$

implies

$$
\begin{align*}
& P_{n}^{(\alpha+\mu, \beta)}(x)=\sum_{r=0}^{n}\binom{\mu}{r}\left(\frac{x+1}{2}\right)^{r} P_{n-r}^{(\alpha+r, \beta+r)}(x), \tag{3.8}\\
& P_{n}^{(\alpha, \beta+\nu)}(x)=\sum_{s=0}^{n}\binom{v}{s}\left(\frac{x-1}{2}\right)^{s} P_{n-s}^{(\alpha+s, \beta+s)}(x) \tag{3.9}
\end{align*}
$$

and more generally

$$
\begin{aligned}
P_{n}^{(\alpha+\mu, \beta+\nu)}(x) & =\sum_{r, s=0}^{n}\binom{\mu}{r}\binom{\nu}{s}\left(\frac{x-1}{2}\right)^{r}\left(\frac{x-1}{2}\right)^{s} P_{n-s}^{(\alpha+s, \beta+s)}(x), \\
& =\sum_{k=0}^{n} P_{n-k}^{(\alpha+k, \beta+k)}(x) \underset{r+s=0}{\Sigma}\binom{\mu}{r}\binom{\nu}{s}\left(\frac{x+1}{2}\right)^{r}\left(\frac{x-1}{2}\right)^{s} ;
\end{aligned}
$$

using (1.1), this reduces to

$$
\begin{equation*}
P_{n}^{(\alpha+\mu, \beta+\nu)}(x)=\sum_{k=0}^{n} P_{k}^{(\mu-k, \nu-k)}(x) P_{n-k}^{(\alpha+k, \beta+k)}(x) \tag{3.10}
\end{equation*}
$$

Incidentally it is evident from (1.4) that

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(x+y)=\sum_{r=0}^{n}\binom{n+\alpha+\beta+r}{r} 2^{-r} y^{r} P_{n-r}^{(\alpha+r, \beta+r)}(x) \text {. } \tag{3.11}
\end{equation*}
$$

Returning to (3.2), which we rewrite as

$$
P_{n}^{(\alpha+1, \beta)}(x)+P_{n}^{(\alpha, \beta+1)}(x)=2 P_{n}^{(\alpha, \beta)}(x)+x P_{n-1}^{(\alpha+1, \beta+1)}(x)
$$

it is easily verified that this implies

$$
\begin{equation*}
\sum_{r=0}^{n}\binom{k}{r} P_{n}^{(\alpha+r, \beta+k-r)}(x)=\sum_{r=0}^{n}\binom{k}{r} 2^{k-r} x^{r} P_{n-r}^{(\alpha+r, \beta+r)}(x) . \tag{3.12}
\end{equation*}
$$

4. In (1.1) replace α, β by $\alpha-n, \beta-n$, respectively. Then we have

$$
\begin{align*}
\sum_{n=0}^{\infty} t^{n} P_{n}^{(\alpha-n, \beta-n)}(x) & =\sum_{n=0}^{\infty} t^{n} \sum_{r=0}^{n}\binom{\alpha}{n-r}\binom{\beta}{r}\left(\frac{x-1}{2}\right)^{r}\left(\frac{x+1}{2}\right)^{n-r} \\
& =\sum_{r, s=0}^{\infty}\binom{\alpha}{s}\binom{\beta}{r}\left(\frac{x-1}{2}\right)^{r}\left(\frac{x+1}{2}\right)^{s} t^{r+s} \\
& =\left(1+\frac{x+1}{2} t\right)^{\alpha}\left(1+\frac{x-1}{2} t\right)^{\beta} . \tag{4.1}
\end{align*}
$$

Again we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} t^{n} P_{n}^{(\alpha, \beta-n)}(x) & =\sum_{n=0}^{\infty} t^{n} \sum_{r+s=n}\binom{\alpha+n}{s}\binom{\beta}{r}\left(\frac{x-1}{2}\right)^{r}\left(\frac{x+1}{2}\right)^{s} \\
& =\sum_{r=0}^{\infty}\binom{\beta}{r}\left(\frac{x-1}{2}\right)^{r} t^{r} \sum_{s=0}^{\infty}\binom{\alpha+r+s}{s}\left(\frac{x+1}{2}\right)^{s} t^{s} \\
& =\sum_{r=0}^{\infty}\binom{\beta}{r}\left(\frac{x-1}{2}\right)^{r} t^{r}\left(1-\frac{x+1}{2} t\right)^{-\alpha-r-1} \\
& =\left(1-\frac{x+1}{2} t\right)^{-\alpha-1} \sum_{r=0}^{\infty}\binom{\beta}{r}\left(\frac{x-1}{2} t\right)\left(1-\frac{x+1}{2} t\right)^{-r} \\
& =\left(1-\frac{x+1}{2} t\right)^{-\alpha-1}\left(1+\frac{\frac{x-1}{2} t}{1-\frac{x+1}{2} t}\right)^{\beta}
\end{aligned}
$$

so that

$$
\begin{equation*}
\sum_{n=0}^{\infty} t^{n} P_{n}^{(\alpha, \beta-n)}(x)=(1-t)^{\beta}\left(1-\frac{x+1}{2} t\right)^{-\alpha-\beta-1} \tag{4.2}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} t^{n} P_{n}^{(x-n, \beta)}(x)=(1+t)^{\alpha}\left(1-\frac{x+1}{2} t\right)^{-\alpha-\beta-1} \tag{4.3}
\end{equation*}
$$

The formula (4.2) is due to Feldheim [4, p. 120].
By means of (4.1) most of the results of $\S 3$ can be proved rapidly. For example we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} t^{n} P_{n}^{(\alpha+\mu-n, \beta+\nu-n)}(x)=\left(1+\frac{x+1}{2} t\right)^{\alpha+\mu}\left(1+\frac{x-1}{2} t\right)^{\beta+\nu} \\
&=\sum_{r=0}^{\infty} t^{r} P_{r}^{(\alpha-r, \beta-r)}(x) \sum_{s=0}^{\infty} t^{s} P_{s}^{(n-s, \nu-s)}(x), \\
& P_{n}^{(\alpha+n-, \beta+\nu-n)}(x)=\sum_{r=0}^{n} P_{r}^{(\alpha-r, \beta-r)}(x) P_{n-r}^{(\mu-n+r, \nu-n+r)}(x)
\end{aligned}
$$

which is equivalent to (3.10). Use of (4.2) and (4.3) suggests various additional formulas. In particular (4.2) implies

$$
\sum_{n=0}^{\infty} t^{n} P_{n}^{(\alpha+\mu, \beta-n)}(x)=\left(1-\frac{x+1}{2} t\right)^{-\mu} \sum_{n=0}^{\infty} t^{n} P_{n}^{(\alpha, \beta-n)}(x)
$$

which gives

$$
\begin{equation*}
P_{n}^{(\alpha+\mu, \beta)}(x)=\sum_{r=0}^{n}\binom{\mu+r-1}{r}\left(\frac{r+1}{2}\right)^{r} P_{n-r}^{(\alpha, \rho+r)}(x) \tag{4.4}
\end{equation*}
$$

Similarly (4.3) leads to

$$
\begin{equation*}
P_{n}^{(\alpha, \beta+\nu)}(x)=\sum_{r=0}^{n}\binom{\nu+r-1}{r}\left(\frac{x-1}{2}\right)^{r} P_{n-r}^{(\alpha+r, \beta)}(x) . \tag{4.5}
\end{equation*}
$$

It is of course easy to prove (4.4) and (4.5) by means of repeated application of (1.2) and (1.3). The formula

$$
\begin{array}{r}
P_{n}^{(\alpha+\mu, \beta+\nu)}(x)=\sum_{r+s \leq n}\binom{\mu+r-1}{r}\binom{v+s-1}{s}\left(\frac{x+1}{2}\right)^{r}\left(\frac{x-1}{2}\right)^{s} \tag{4.6}\\
\cdot
\end{array}
$$

includes both (4.4) and (4.5); it may be compared with (3.10).

We also note the formula

$$
\begin{equation*}
P_{n}^{(\alpha+\mu, \beta)}(x)=\sum_{r=0}^{n}\binom{\mu}{r} P_{n-r}^{(\alpha+r, \beta+\mu)}(x) \tag{4.7}
\end{equation*}
$$

which follows easily from (4.3); for $\mu=1$, (4.7) reduces to (3.1).
5. When $\alpha==\beta$, (4.1) becomes

$$
\begin{equation*}
\sum_{n=0}^{\infty} t^{n} P_{n}^{(\alpha-n, \alpha-n)}(x)=\left(1+\frac{x+1}{2} t\right)^{\alpha}\left(1+\frac{x-1}{2} t\right)^{\alpha} \tag{5.1}
\end{equation*}
$$

We recall that

$$
\begin{equation*}
\sum_{n=0}^{\infty} t^{n} P_{n}^{(\lambda)}(x)=\left(1-2 x t+t^{2}\right)^{-\lambda} \tag{5.2}
\end{equation*}
$$

where [5, p. 80]

$$
\begin{equation*}
P_{n}^{(\lambda)}(x)=\frac{(2 \alpha+1)_{n}}{(\alpha+1)_{n}} P_{n}^{(\alpha, \alpha)}(x) \quad\left(\lambda=\alpha+\frac{1}{2}\right) \tag{5.3}
\end{equation*}
$$

Now the right member of (5.1) is equal to

$$
\left(1+\frac{2 x u}{\left(x^{2}-1\right)^{1 / 2}}+u^{2}\right)^{x} \quad\left(u^{2}=\frac{x^{2}-1}{4} t^{2}\right) .
$$

Thus (5.1) becomes

$$
\sum_{n=0}^{\infty} t^{n} P_{n}^{(x-n, \beta-n)}(x)=\sum_{n=0}^{\infty}(-1)^{n} u^{n} P_{n}^{(-\alpha)}\left(\frac{x}{\left(x^{2}-1\right)^{1 / 2}}\right),
$$

so that

$$
P_{n}^{(\alpha-n, \beta-n)}(x)=(-1)^{n} 2^{n}\left(x^{2}-1\right)^{n / 2} P_{n}^{(-\alpha)}\left(\frac{x}{\left(x^{2}-1\right)^{1 / 2}}\right) .
$$

But by (5.3)

$$
P_{n}^{(\alpha-n, 3-n)}(x)=\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{(\alpha-n)(\alpha-n 1) \ldots(\alpha-2 n+1)} P_{n}^{\left(\alpha-n+\frac{1}{2}\right)}(x) .
$$

We have therefore

$$
\begin{align*}
&(-1)^{n} 2^{n}\left(x^{2}-1\right)^{n / 2} P_{n}^{(-\alpha)}\left(x\left(x^{2}-1\right)^{-1 / 2)}\right. \tag{5.4}\\
&= \frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{(\alpha-n)(\alpha-n-1) \ldots(\alpha-2 n+1)} P_{n}^{\left(\alpha-n+\frac{1}{2}\right)}(x)
\end{align*}
$$

which is equivalent to a formula of Tricomi [3, p. 178]. We note that (5.4) can also be proved by means of

$$
P_{n}^{(\lambda)}(x)=(2 \lambda)_{n} \underset{2 r \leq n}{\searrow} \frac{x^{n-2 r}\left(r^{2}-1\right)^{r}}{2^{2 r} \cdot r!(n-2 r)!\left(\lambda+\frac{1}{2}\right)_{r}}
$$

which is a consequence of (5.2). As a particular case of (5.4) we mention ($\alpha=-1 / 2$)
(5.5) $\quad(-1)^{n} 2^{n}\left(x^{2}-1\right)^{n / 2} P_{n}\left(x\left(x^{2}-1\right)^{-1 / 2}\right) \frac{1 \cdot 3 \ldots(2 n-1)}{(2 n+1)(2 n+3) \ldots(4 n-1)} P_{n}^{(-n)}(x)$.

Other formulas involving the ultraspherical polynomials are readily obtained. For example (3.10) implies

$$
\begin{equation*}
P_{n}^{(\alpha+\beta, \alpha+\beta)}(x)=\sum_{r=0}^{n} P_{r}^{(\alpha-r, \beta-r)}(x) P_{n-r}^{(\beta+r, \alpha+r)}(x), \tag{5.6}
\end{equation*}
$$

while (3.8) and (3.9) give

$$
\begin{align*}
& P_{n}^{(\beta, \beta)}(x)=\sum_{r=0}^{n}\binom{\beta-\alpha}{r}\left(\frac{x+1}{2}\right)^{r} P_{n-r}^{(\alpha+r, \beta+r)}(x), \tag{5.7}\\
& P_{n}^{(\alpha, \alpha)}(x)=\sum_{r=0}^{n}\binom{\alpha-\beta}{r}\left(\frac{x-1}{2}\right)^{r} P_{n-r}^{(\alpha+r, \beta+r)}(x) . \tag{5.8}
\end{align*}
$$

Also it follows from (4.1) that

$$
\begin{align*}
P_{n}^{(\alpha, \beta)}(x) & =\sum_{r=0}^{n}\binom{\alpha-\beta}{r}\left(\frac{x+1}{2}\right)^{r} P_{n-r}^{(\beta+r, \beta+r)}(x) \tag{5.9}\\
& =\sum_{r=0}^{n}\binom{\beta-\alpha}{r}\left(\frac{x-1}{2}\right)^{r} P_{n-r}^{(\alpha+r, \alpha+r)}(x) .
\end{align*}
$$

6. Returning to (1.4), it is clear that the polynomial

$$
\begin{equation*}
f_{n}^{(\alpha, \beta)}(x)=\frac{2^{n}}{(\alpha+\beta-n+1)_{n}} \cdot P_{n}^{(\alpha-n, \beta-n)}(x) \tag{6.1}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\frac{d}{d x} f_{n}^{(\alpha, \beta)}(x)=f_{n-1}^{(\alpha, \beta)}(x) ; \tag{6.2}
\end{equation*}
$$

in other words $\left\{f_{n}^{(\alpha, \beta)}(x)\right\}$ constitute an Appell set of polynomials. Using (2.7) we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} t^{n} f_{n}^{(\alpha, \beta)}(x)=e^{(x-1) t}{ }_{1} F_{1}(-\alpha ;-\alpha-\beta ; 2 t) \tag{6.3}
\end{equation*}
$$

from which the property (6.2) is immediate. Also (3.11) follows at once. (6.3) may compared with the formula

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{2^{n} t^{n}}{(\alpha+1)_{n}} P_{n}^{(\alpha, \beta-n)}(x)=e^{(x+1) t} F_{1}(-\beta ; \alpha+1 ;(1-x) t) \tag{6.4}
\end{equation*}
$$

found by Feldheim [4, p. 120]. Incidentally it follows from (6.4) that the polynomials

$$
\begin{equation*}
g_{n}^{(\alpha, \beta)}(x)=\frac{(x+1)^{n}}{(\alpha+1)_{n}} P_{n}^{(\alpha, \beta-n)}\left(\frac{x-1}{x+1}\right) \tag{6.5}
\end{equation*}
$$

also form an Appell set.
When $\alpha=\beta$, it follows from [7, p. 104]

$$
\begin{aligned}
e_{1}^{-t} F_{1}(-\alpha ;-2 \alpha ; 2 t) & ={ }_{0} F_{1}\left(\frac{1}{2}-\alpha ; \frac{1}{4} t^{2}\right) \\
& =\Gamma\left(\frac{1}{2}-\alpha\right)\left(\frac{1}{2} t\right)^{\frac{1}{2}+\alpha} I_{-\frac{1}{2}-\alpha}(t)
\end{aligned}
$$

that

$$
\begin{equation*}
\sum_{n=0}^{\infty} t^{n} f_{n}^{(\alpha, \alpha)}(x)=e^{x t} \Gamma\left(\frac{1}{2}-\alpha\right)\left(\frac{1}{2} t\right)^{\frac{1}{1}+\alpha} I_{-\frac{1}{2}-\alpha}(t) \tag{6.6}
\end{equation*}
$$

By means of (6.3) and (6.4) we can derive certain formulas involving products of Jacobi polynomials. We shall make use of $[2$, p. 120, (42), (43)] ; (6.8) had been found earlier
by Bailey [1]

$$
\begin{gather*}
{ }_{1} F_{1}(a ; c ; u)_{1} F_{1}(a ; c ; v) \tag{6.8}\\
=\sum_{n=0}^{\infty}(-1)^{\cdot} \frac{(a)_{r}(c-a)_{r}}{r!(c)_{r}(c)_{2 r}}(u v)_{{ }_{1}} F_{1}(a+r ; c+2 r ; u+v)
\end{gather*}
$$

Thus by (6.4) and (6.7)
which yields after a little manipulation
(6.9) $\quad\binom{m+n}{m} P_{m+n}^{(\alpha, \beta-m-n)}(x)$

$$
\begin{aligned}
&=\frac{(\alpha+1)_{m}(\alpha+1)_{n}}{(\alpha+1)_{m+n}} \sum_{r=0}^{\min (m, n)}(-1)^{r}\binom{\beta}{r} \frac{(\alpha+1)_{2},(\alpha+\beta+1)}{(\alpha+r),(\alpha+m+1)_{r}(\alpha+n+1)_{r}} \\
& \cdot\left(\frac{1-x}{2}\right)^{2 r} P_{m-r}^{(\alpha+2 r, \beta-m)}(x) P_{n-r}^{(\alpha+2 r, \beta-n)}(x)
\end{aligned}
$$

Similarly by means of (6.8) we obtain

$$
\begin{equation*}
P_{m}^{(\alpha, \beta-m)}(x) P_{n}^{(\alpha, \beta-n)}(x) \tag{6.10}
\end{equation*}
$$

$$
=\frac{(\alpha+1)_{m}(\alpha+1)_{n}}{(\alpha+1)_{n+n}}{\underset{r}{m i n}(m, n)}_{\sum_{r=0}}^{\operatorname{mon}}\binom{\beta}{r}\binom{m+n-2 r}{m-r} \frac{(\alpha+\beta+1)_{r}}{(\alpha+1)}\left(\frac{1-x}{2}\right)^{2 r}
$$

$$
\cdot P_{m+n-2 r}^{(a+2 r, 3-m-r)}(x)
$$

$$
\begin{aligned}
& \sum_{=0}^{\infty} \frac{2^{k}(u+v)^{h}}{(\alpha+1)_{k}} P_{k}^{(\alpha, \beta-k}(x)=e^{(x+1)(u+v)}{ }_{1} F_{1}(-\beta ; \alpha+1 ;(1-x)(u+v)) \\
& =\sum_{r=0} \frac{(-\beta)_{r}(\alpha+\beta+1)_{r}}{r!(\alpha+r)_{r}(\alpha+1)_{q_{r}}}(1-x)^{2 r}(u v)^{r} \\
& \cdot \sum_{m=0}^{\infty} \frac{2^{m} u^{n b}}{(\alpha+2 r+1)_{n}} P_{m}^{(\alpha+2 r, \beta-r-m)}(x) \sum_{n=0}^{\infty} \frac{2^{n} v^{n}}{(\alpha+2 r+1)_{n}} P_{n}^{(\alpha+2 r, \beta-r-n)}(x),
\end{aligned}
$$

The formulas (6.9) and (6.10) were stated without proof by Feld. heim [4, p. 134].

Finally using (6.3) together with (6.7) and (6.8) we get in like manner

$$
\begin{align*}
& \binom{m+n}{m} P_{m+n}^{(\alpha-m-n, \beta-m-m)}(x) \tag{6.11}\\
& =\frac{\left[(-\alpha-\beta)_{m+n}\right.}{(-\alpha-\beta)_{m}(-\alpha-\beta)_{n}} \sum_{r=0}^{\min (m, n)}(-1)^{r}\binom{\beta}{r} \\
& \cdot \frac{(-\alpha)_{r}(-\alpha-\beta)_{2},}{(-\alpha-\beta+r-1)_{r}(-\alpha-\beta+m),(-\alpha-\beta+n)_{r}} \\
& \quad \cdot P_{m-r}^{(\alpha-m, \beta-m)}(x) P_{n-r}^{(\alpha-n, \beta-n)}(x)
\end{align*}
$$

$$
\begin{align*}
& P_{m}^{(\alpha-m, \beta-m)}(x) P_{n}^{(\alpha-n, \beta-n)}(x) \tag{6.12}\\
&+\frac{(-\alpha-\beta)_{m}(-\alpha-\beta)_{n} \min (m, n)}{(-\alpha-\alpha)_{m+n}} \sum_{r=0}^{(\beta}\binom{\beta}{r}\binom{m+n-2 r}{m-r} \frac{(-\alpha)_{r}}{(-\alpha-\beta)_{r}} \\
& \cdot P_{m+n-2 r}^{(\alpha-m-n+r, \beta-m-n+r)}(x) .
\end{align*}
$$

REFERENCES

[1] W. N. Bailey, On the product of two Legendre polynomials with different arguments, Proceedings of the London Mathematical Society, vol. 41 (1936), pp. 215-220.
[2] J. L. Burchnall and T. W. Chaundy, Expansion of Appell's double hypergeometric functions, (II), Quarterly Journal of Mathem. (Oxford), vol. 12 (1941), pp. 112-128.
[3] A. Erdeli, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higer Transcendental Functions, vol. 2, New York, 1923.
[4] E. Feldheim, Relations entre les polynomes de Jacobi, Laguerve et Hermite, Acta Mathematica, vol. 74 (1941), pp. 117-138.
[5] G. Szeqö, Orthogonal polynomials, American Mathematical Society Colloquium Publications, New York, 1939.
[6] L. Toscano, I polinomi ipergeometrici nel calcolo delle differenze finite, Bollettino della Unione Matematica Italiana, serie 3, vol. 4 (1940), pp. 398-409.
[7] G. N. Watson, Theory of Bessel Functions, second edition, Cambridge. New York, 1944.

[^0]: Articolo digitalizzato nel quadro del programma
 bdim (Biblioteca Digitale Italiana di Matematica)
 SIMAI \& UMI
 http://www.bdim.eu/

