BOLLETTINO UNIONE MATEMATICA ITALIANA

MARIO CURZIO

Una osservazione sui piani grafici h-l transitivi.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 11 (1956), n.2, p. 238–241.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1956_3_11_2_238_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Una osservazione sui piani grafici h-l transitivi.

Nota di Mario Curzio (a Napoli)

Sunto. - È l'enunciato dei teoremi cui si perviene.

1. Dicesi con R. BAER (1), piano h-l transitivo, ogni piano grafico II dotato di due rette h, l, tali che esistano tutte le omologie possibili di II aventi asse l e il centro su h.

I piani finiti h-l transitivi sono stati caratterizzati per via geometrico-gruppale da G. Zappa (²) e per via algebrica da L. Lombardo Radice (²). Nelle pagine seguenti, dimostro con metodi elementari, una proprietà di tali piani, che non ho trovato menzionata nella letteratura a me accessibile.

- 2. Sia Π un piano grafico irriducibile di rango finito $n \geq 3$. In Π vi siano due rette h, l ed un punto U fuori di esse, tali che
 - a) Π sia h 1 transitivo,
 - b) esistano tutte le omologie di centro U ed asse l.

La a) comporta che n sia potenza di un numero primo $\binom{2}{l}$ e che esista il gruppo S delle n omologie di asse l con il centro V nel punto comune ad h ed l. Inoltre, il gruppo T delle omologie di cui in b), ha ordine n-1. Il prodotto di un'omologia σ di S per un'omologia τ di T, è ancora un'omologia di asse l ed ha il centro sulla retta UV, mantenendosi questa unita nel prodotto $\sigma\tau$; il centro di $\sigma\tau$ è poi distinto da V ed U, perchè se così non fosse, posto $\omega = \sigma\tau$, con ω per es. in S si avrebbe $\tau = \sigma^{-1}\omega$, onde τ avrebbe il centro in V

⁽⁴⁾ R- BAER, Homogeneity of projective planes, « Am. Journ. of Math. », 64, (1942), pp. 137-152.

⁽²⁾ G. ZAPPA, Sui piani grafici finiti h — l transitivi, a Boll. U. M. I. > (3), 9, (1954), pp. 16-23.

L. LOMBARDO RADICE, Sui sistemi cartesiani di coordinate dei piani grafici h — 1 transitivi, 1b. pp. 24-29.

contro l'ipotesi. Se σ_i , σ_j sono omologie di S, τ un'omologia di T. È subito visto che le omologie $\sigma_i \tau$, $\sigma_j \tau$, sono distinte. Inoltre, se τ_h , τ_h sono in T, non può aversi $\sigma_i \tau_h = \sigma_j \tau_h$ perchè in tal caso essendo $\sigma_j^{-1} \sigma_i = \tau_h \tau_h^{-1}$ e tale omologia non identica perchè $\sigma_i + \sigma_j$, $\tau_h + \tau_h$, sarebbero coincidenti due omologie non identiche aventi centri distinti. Pertanto, incluse quelle dei gruppi S e T; esistono almeno $n(n-1) = n^2 - n$ omologie di asse l col centro sulla retta UV; ma, essendo $n^2 - n$ il numero dei punti di Π fuori di l ed UV, le $n^2 - n$ omologie considerate sono tutte le possibili omologie di asse l col centro sulla retta UV. Dunque:

Il piano Π è UV - l transitivo.

Siano ora U_1 U_2 ,..., U_n , gli n punti di h distinti da V, L_i (i=1, 2, ..., n) il punto comune alle rette l, UU_i . Avendo supposto $n \ge 3$, esiste su UU_i un punto K_i distinto da U, U_i , L_i ; per la b) esiste un'omologia (3) (unica), sia τ_1 , di centro U ed asse l che porta K_i in U_i .

Sia ora N_1 un punto di VU distinto da V, U; τ_1 porterà N_1 in un punto N_2 distinto ancora da V, U, N_1 ed appartenente alla retta VU. Sia inoltre R, il punto comune alle rette L_iN_1 e U_iN_2 . L'ipotesi a), comporta l'esistenza di un'omologia τ_2 di centro U_i ed asse l che muta N_2 in R, essendo U_i su h e U_i , N_2 , R allineati. L'omologia $\tau_1\tau_2$, avrà il centro sulla retta U_iU poichè questa congiunge i centri di τ_1 e τ_2 ; inoltre, $\tau_1\tau_2$, avrà il centro sulla retta N_1 R, essendo:

$$\tau_{1}\tau_{2}(N_{1}) = \tau_{2}(N_{2}) = R.$$

Poichè L_i è il punto comune ad U_iU ed N_1R , il centro dell'omologia è il punto L_i . È inoltre chiaro che: $\tau_1\tau_2(K_i) = U_i$.

Dunque:

Per ogni punto K_i di L_iU_i distinto da L_i , U, U_i ; esiste un'omologia di asse l e centro L_i che porta K_i in U_i .

Mostriamo ora che esiste una omologia (unica) di asse l e centro L_i che porta U in U_i . Sia ω una delle omologie di cui si è provata ora l'esistenza. Se $\omega(U) = U_i$ l'asserto è provato. Se $\omega(U) = U' + U_i$, esisterà una omologia ω' di centro L_i ed asse l

(3) Per provare l'unicità d'una tale omologia, basta ripetere il ragionamento che si fa nel caso desarguesiano. Vedi ad es.: G. ZAPPA, Reticoli e Geometrie finite, Liguori, Napoli, 1952.

per cui $\omega'(U') = U_i$. Ma:

$$\omega\omega'(U) = \omega'[\omega(U)] = U_i$$
,

donde consegue l'asserto.

Essendo $V, L_1, L_2, ..., L_n$ tutti i punti di l, l'arbitrarietà di K_n sulla retta U L_n e quanto sopra visto provano che:

Esistono tutte le omologie speciali d'asse l.

Ripetendo il ragionamento che ha portato a riconoscere l'esistenza di tutte le omologie di asse l con il centro sulla retta VU, se ne deduce l'esistenza di tutte le omologie di asse l con il centro sulle rette U L_i . Esistono dunque, tutte le omologie di asse l con i centri sulle n+1 rette di Π uscenti da U, e pertanto, tali centri sono n^2+n+1 , cioè quando sono i punti di Π . Allora il piano Π è desarguesiano rispetto ad l, e, per un noto teorema (4), desarguesiano.

Si supponga ora che per Π valgano le ipotesi iniziali, tranne la b), sostituita dalla seguente:

b') Vi è un punto U di l distinto da V, tale che esistano tutte le omologie di asse l e centro U.

Ragionamenti del tutto analoghi a quelli precedenti, provano l'esistenza di ogni omologia di asse l col centro sulle rette UU_i , essendo $U_1,\ U_2,\dots,\ U_n$ i punti di h distinti da V. Detto ancora T il gruppo delle omologie di asse l col centro in U, una omologia $\sigma\tau$ (σ in S, τ in T) è una omologia speciale di asse l con il centro distinto da V ed U. Se inoltre σ_i , σ_i sono omologie di S e τ_h , τ_k omologie di T, non può aversi $\sigma_j\tau_h=\sigma_i\tau_k$; ciò, perchè si suppone $\sigma_i \neq \sigma_i$, $\tau_h \neq \tau_k$ ed essendo il prodotto di due omologie dello stesso asse e dello stesso centro, una omologia avente quell'asse e quel centro.

Avendo S e T ciascuno ordine n, segue da quanto sopra che esistono almeno n^2 omologie speciali di asse l. Ma, in Π , non possono esservi più di n^2 omologie speciali di dato asse, dunque esistono tutte le omologie speciali di asse l. Queste, insieme con le omologie aventi il centro sulle rette UU_i , sono tutte le possibili omologie di Π aventi asse l. Essendo i punti di l, UU_i in numero

⁽⁴⁾ Vedi ad es.: L. LOMBARDO RADICE, Una nuova costruzione dei piani grafici desarguesiani finiti, « Ric di Mat. », 1, (1953) pp. 47-57.

di $n^2 + n + 1$, il piano II è desarguesiano rispetto ad l, e, quindi, desarguesiano.

In conclusione, tutto quanto precedentemente visto prova il seguente:

Teorema I. – Sia Π un piano grafico finito irriducibile, h-1 transitivo e sia U un punto di Π fuori di h. Se esistono tutte le omologie di asse 1 con il centro in U, Π è desarguesiano.

Essendo Π anche l-h transitivo (5), la conclusione precedente vale anche quando si postuli l'esistenza di tutte le omologie di asse h, con il centro in un dato punto U fuori di l.

- 3. Secondo R. BAER (1), dicesi H-L transitivo un piano grafico dotato di due punti L, H, tali che:
- a) Esistono tutte le omologie di centro L con l'asse passante per H.
- b) Esistono tutte le omologie speciali aventi per asse la retta LH.

Il Prof. L. Lombardo Radice, ha dimostrato (²) che i piani h-l transitivi sono tutti e soli i piani sopra i sistemi inversi di quasi-corpi del Dickson; e, che conseguentemente (°) i piani su quasi-corpi del Dickson, sono tutti e soli i piani H-L transitivi.

Pertanto, il teorema I, si traduce per dualità nel seguente:

Teorema II. – Sia II un piano grafico finito irriducibile H-L transitivo e sia u una retta di II non passante per H. Se esistono tutte le omologie di centro L ed asse u, Π è desarguesiano.

È ovvio come si modifichi quanto sopra, volendo tener presente che un piano H-L transitivo, è anche L-H transitivo (6).

- (5) G. Zappa, Sulle omologie dei piani h l transitivi e dei piani su quasi-corpi, « Ric. di Mat. », 1, (1954), pp 35-39.
- (6) L LOMBARDO RADICE, L'inversione come dualità nei piani su sistemi cartesiani, «Ric. di Mat.», 1, (1954), pp. 31-34.