BOLLETTINO UNIONE MATEMATICA ITALIANA

FULVIA SKOF

Osservazioni sulle componenti lacunari delle serie ultraconvergenti.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 11 (1956), n.2, p. 217–228.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1956_3_11_2_217_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Osservazioni sulle componenti lacunari delle serie ultraconvergenti

Nota di Fulvia Skof (a Milano)

Sunto. - Si stabiliscono alcune proprietà della successione $\{n_1\}$ costituita dagli indici dei coefficienti delle componenti lacunari delle serie di potenze (prolungabili e) ultraconvergenti: queste proprietà riguardano l'andamento della somma $S(x) = \sum\limits_{n_1 \leq x} (1/n_1)$ che, tra l'altro, viene valutata al disotto e viene adattata su una funzione prestabilita soddisfacente ad appropriate ipotesi.

1. Introduzione. Sia $f(z) = \sum_{0}^{\infty} a_n z^n$ convergente per |z| < 1, prolungabile fuori del cerchio |z| < 1 e ultraconvergente. Un classico teorema di A. Ostrowski (1) assicura che

$$(1.1) f(z) = g(z) + \varphi(z)$$

dove

$$g(z) = \sum_{l=1}^{\infty} a_{n_l} z^{n_l}$$

è una componente lacunare (lim sup $n_{l+1}/n_l > 1$), regolare per |z| < 1, prolungabile e ultraconvergente, e $\varphi(z)$ è la parte residua, cioè una serie (eventualmente un polinomio) avente raggio di convergenza maggiore di 1.

La ripartizione (1.1) di f(z) può essere evidentemente fatta in infiniti modi, a ciascuno dei quali corrisponde una componente

(4) Per le nozioni riguardanti l'ultraconvergenza delle serie di potenze vedere: A. Ostrowski, On Representation of analytical Functions by power Series, Journ. London Math. Soc., 1 (1926), pp. 251-263; G. Bourion, Recherches sur l'ultraconvergence, Ann. Ecole Norm. Sup., (3), 50, (1933), pp. 245-318; G. Bourion, L'ultraconvergence dans les séries de Taylor, Act. Scient. 472, Paris (1937), pp. 48. A queste opere rimandiamo per la bibliografia.

Vedere anche: G. Ricci, a) Sulle serie di potenze lacunari prolungabili e ultraconvergenti, Rend. Acc. Lincei (8), 18, pp. 27-31 (1955); b) Prolungabilità e ultraconvergenza delle serie di potenze. Modulazione del margine delle lacune, Rend. di Mat. Univ. Roma, (5), 14 (1955), pp. 602-632; c) id. id., Boll. U.M.I., (3), 10, (1955), pp. 439-452.

lacunare che dovrà rispettare le condizioni dei due teoremi di A. Ostrowski.

Ci proponiamo di studiare l'andamento delle successioni $\mid n_l \mid$ che sono inerenti alle componenti lacunari g(z), e, più precisamente, l'andamento della somma

$$S(x) = \sum_{n_l \le x} \frac{1}{n_l}$$

al crescere di x. I risultati sono da interpretarsi come semplici proprietà delle successioni di interi vincolate dai teoremi di A. Ostrowski e da quello di G. Bourion.

È utile richiamare le seguenti definizioni:

1) Si dice che $|p_h, q_h|$, (h = 1, 2, 3, ...), $(p_h, q_h \text{ interi}; 0 \leq p_1 < q_1 \leq p_2 < q_2 \leq p_3 < q_3 \leq ...)$, è una successione di lacune (H. O.) per f(z) quando è $q_h - p_h > \theta p_h$, $(h = 1, 2, 3, ...; \theta > 0$, indipendente da h), e per la successione parziale degli interi m con $p_h < m < q_h$ (h = 1, 2, 3, ...) si ha

$$\lim \sup |a_m|^{1/m} < 1.$$

2) Si dice ordine di lacunarità (H. O.) l'estremo superiore $\Lambda(f)$ (≥ 0) dei numeri θ ai quali è possibile coordinare la successione di lacune $\{p_h, q_h\}$.

Consideriamo due componenti lacunari $g(z) = \sum a_{n_l} z^{n_l}$ e $\tilde{g}(z) = \sum a_{\nu_l} z^{\nu_s}$ di f(z).

Si dice che $\tilde{g}(z)$ è contenuta in g(z) (e scriveremo $\tilde{g}(z) \subseteq g(z)$) quando $\{\nu_s\} \subseteq \{n_t\}$.

Si dice che $\tilde{g}(z)$ è contenuta e aderente a g(z) (e scriveremo $\tilde{g}(z) \subseteq g(z)$) quando, a partire da un certo indice k_0 in poi (cioè per $k \ge k_0$) ogni lacuna $(\tilde{p}_h, \tilde{q}_h)$ di $\tilde{g}(z)$ contiene una e una sola lacuna (p_h, q_h) di g(z).

L'andamento di $\{n_t\}$ si pensa descritto dalla funzione S(x) che ne pone in evidenza la cosiddetta « densità logaritmica » (2).

Sussistono i tre teoremi seguenti, dei quali il primo intende valutare al disotto l'andamento della somma S(x); il secondo

(2) Alla successione $\{n_l\}$ associamo il rapporto

$$\rho(x) = \sum_{n_1 \leq x} \frac{1}{n_l} : \sum_{n \leq x} \frac{1}{n} \sim S(x) : \log x.$$

Diremo, seguendo una locuzione classica, che $\{n_l\}$ ha la densità logaritmica positiva quando lim inf $\rho(x) > 0$, $(x \to +\infty)$. pone in relazione l'andamento di una somma S(x) con quello della somma analoga $\tilde{S}(x)$ inerente alle componenti lacunari contenute; il terzo stabilisce l'esistenza di componenti lacunari la cui somma S(x) ha un andamento che segue quello di una funzione prestabilita, soddisfacente ad appropriate ipotesi.

- 2. TEOREMA I. a) Per ogni g(z) è $S(x) \rightarrow +\infty$ $(x \rightarrow +\infty)$.
 - b) Se $\Lambda(f)$ è finito, allora per ogni g(z) è

(2.1)
$$\gamma \log x < S(x) (< \log x + C), \quad (\gamma = \gamma(g) > 0, \ x \ge x_1)$$
 (cioè la densità logaritmica di $\{n_i\}$ è positiva).

c) Esistono f(z) con $\Lambda(f) = +\infty$ tali che per ogni loro componente g(z) risulta ancora valida la (2.1) e altre f(z) con $\Lambda(f) = +\infty$ che ammettono componenti lacunari g(z) con $\{n_i\}$ di densità logaritmica nulla.

DIMOSTRAZIONE.

a) Sia $\mid p_h, \ q_h \mid (h=1, 2, 3, ...)$ una successione di lacune (H. O.). Indichiamo con L(x) il numero degli interi $m \leq x$ appartenenti alle lacune cioè tali che $p_h < m < q_h$ (h=1, 2, 3, ...), e con N(x) il numero degli indici $n_l \leq x$, dove $q_{h-1} \leq n_l \leq p_h$ (h=1, 2, 3, ...): allora risulta N(x) = x - L(x). Un noto teorema sulla consistenza delle lacune, conseguenza del secondo teorema di A. Ostrowski, garantisce che per ogni componente lacunare è verificata la relazione $\binom{3}{2}$

$$\lim\inf L(x)/x<1,$$

e quindi la funzione N(x) verifica la disuguaglianza

$$\limsup N(x)/x = 2\tau > 0 \qquad (\tau \le 1/2).$$

Si può supporre $\tau < 1/2$ (altrimenti si assumerebbe $\tau' < \tau$). Esiste una successione $\{x_j\}$ tale che sia $N(x_j) > \tau x_j$, $x_j > (2/\tau)x_{j-1}$. Allora risulta

$$S(x_{j}) - S(x_{j-1}) = \sum_{x_{j-1} < n_{l} \le x_{j}} \frac{1}{n_{l}} \text{ (almeno } \tau x_{j} - x_{j-1} > x_{j-1} \text{ termini)}$$

$$\geq \frac{1}{x_{j}} + \frac{1}{x_{j} - 1} + \dots + \frac{1}{x_{j} - x_{j-1} + 1}$$

$$\geq \log \left(1 - \frac{x_{j-1}}{x_{j}} + \frac{1}{x_{j}}\right)^{-1} + O(1/x_{j-1})$$

$$\geq -\log (1 - \tau/2) + O(1/x_{j-1}).$$

(3) Vedere per. es. G. Ricci, loc. cit. in (1), a), p. 31.

Ne segue

$$S(x_j) = \sum_{h=1}^{j} \{ \tau/2 + O(1/x_{h-1}) \} = j \cdot \tau/2 + O(1),$$

da cui l'asserto.

b) È noto che, quando l'ordine $\Lambda(f)$ è finito, per ogni componente lacunare g(z) di f(z) è lim sup L(x)/x < 1 e di conseguenza lim inf N(x)/x > 0 per $x \to +\infty$ (4).

Considerando $x = n_l$ (l = 1, 2, 3, ...) risulta $\liminf l/n_l = 2\sigma > 0$ e quindi $l/n_l > \sigma$ per $l > L_0$ abbastanza grande.

Sia $n_K \leq x < n_{K+1} < n_K (1 + 2\Lambda(f))$; allora

$$S(x) = S(n_K) = S(n_{L_0}) + \sum_{n_{L_0} < n_l \le n_K} \frac{1}{n_l} \ge \sigma \sum_{L_0 < l < K} \frac{1}{l}$$

$$= \sigma(\log K - \log L_0) + O(1/L_0)$$

$$= \sigma \log K + O(1) \ge \sigma \log (\sigma n_K) + O(1)$$

$$= \sigma \log n_K + O(1) = \sigma \log n_{K+1} + O(1)$$

$$\ge \sigma \log x + O(1).$$

Con $\gamma(g)$ opportuno è $S(x) \ge \gamma \log x$ per $x \ge x_1$.

c) Costruiamo una f(z) con $\Lambda(f) = +\infty$ e tale che per ogni sua componente g(z) sia valida la (2.1).

Scegliamo una qualunque successione crescente $|\mu_h|$ di interi μ_h (h=1, 2, 3, ...) tale che siano soddisfatte le condizioni seguenti (che sono compatibili fra loro come facilmente si verifica):

i)
$$1 < \lim \inf \mu_{h+1}/\mu_h < \lim \sup \mu_{h+1}/\mu_h = + \infty$$

ii)
$$\mu_{h+1} < \mu_h^{c_1}, (c_1 > 1)$$
 iii) $\log \mu_h < c_2 h, (c_2 > 0).$

(Si può assumere, per esempio, $\delta > 1$, $\mu_1 = 1$ e

$$\mu_{h+1} = [\delta^2 \mu_h] + 1$$
 per $h \neq k^2$ $(k = 3, 4, 5, ...)$

$$\mu_{h+1} = [\delta^2 \mu_h \cdot \gamma_h] + 1$$
 per $h = k^2$ $(k = 3, 4, 5, ...)$

dove $\gamma_h \to +\infty$ per $h \to +\infty$, $\gamma_h < \mu_h^c$, $\log (\gamma_2 \gamma_3 ... \gamma_h) = O(h)$.

Sia $\delta > 1$ e $\{\mu_n\}_{\delta}$ la successione degli interi n soddisfacenti ad una almeno delle disuguaglianze

$$\mu_h/\delta < n < \mu_h\delta$$
 $(h = 1, 2, 3, ...)$

e $\mid \mu_h \mid_{\delta}'$ la successione complementare di $\mid \mu_h \mid_{\delta}$.

(4) Vedere G. Ricci, loc cit. in (1), a), p 31.

In base ad un noto teorema di G. Bourion (5) si costruisca la serie $f(z) = \sum_{0}^{\infty} a_n z^n$ ultraconvergente lungo tutte e sole le successioni $\mid m_k \mid$ a ciascuna delle quali si può coordinare un $\delta > 1$ in guisa che $\mid m_k \mid$ sia contenuta in $\mid \mu_k \mid_{\delta}'$; allora da lim sup $\mu_{k+1}/\mu_k = +\infty$ segue $\Lambda(f) = +\infty$.

Sia $\delta^2 < \liminf \mu_{h+1}/\mu_h$ e g(z) la componente lacunare per la quale $\{n_l\}$ coincide con $\{\mu_k\}_\delta$ e poniamo

$$S_h = \sum_{\mu_h/\delta < n \leq \mu_h \delta} \frac{1}{n}.$$

Allora è $S_h \sim 2 \log \delta$ e quindi per ogni $\mu_h \delta < x \leq \mu_{h+1} \delta$ risulta, almeno per $h \geq h_0$ conveniente,

$$S_{k_0} + S_{k_0+1} + \dots + S_k \leq S(x) \leq S_1 + S_2 + \dots + S_{k+1},$$

da cui $S(x) \sim 2h \log \delta$ per $h \to +\infty$.

Tenendo conto della condizione iii) e poi della ii), si trova che, per h abbastanza grande, è

$$S(x) > c' \log \mu_h > c'' \log \mu_{h+1} > c''' \log x.$$

Sia $g(z) = \sum a_{\nu_l} z^{\nu_l}$ una qualunque componente lacunare di f(z) esiste τ tale che la successione $\{\nu_l\}$ contiene (almeno per l abbastanza grande) la successione $\{\mu_h\}_{\tau}$ e la considerazione precedente conduce alla (2.1).

Un semplice esempio di funzione f(z) che presenta le proprietà $\Lambda(f) = +\infty$ e (2.1) per ogni componente lacunare, è fornito da

$$f(z) = \sum_{h=1}^{\infty} P_h$$
 , $P_h = \frac{|z(1-z)|^{2^{v_h}}}{C_h}$, $C_h = \binom{2^{v_h}}{2^{v_h-1}}$

 $\{v_h\}$ è la successione crescente degli interi v positivi soddisfacenti alla condizione $u^2 + u \leq v \leq (u+1)^2$, (u=1, 2, 3, ...).

Una funzione f(z) per la quale (2.1) non è valida si può ottenere sostituendo alle condizioni i), ii), iii) le seguenti:

i)'
$$\mu_{h+1}/\mu_h \rightarrow +\infty$$
 ii)' $h/\log \mu_h \rightarrow 0$.

(5) Per questo teorema vedere: G. Bourion, Ann. Éc. Norm., loc. cit. (4), p. 274 e per la forma nella quale è considerato qui: G. Ricci, Boll. U. M. I., loc. cit. in (4), p. 449.

Infatti, fissato $\varepsilon > 0$ arbitrariamente piccolo, ogni successione $\{\mu_h\}_{\delta}$ ($\delta > 1$) è tale che per $\mu_h\delta < x \leq \mu_{h+1}\delta$ e per h abbastanza grande risulta

$$S(x)/\log x < S(x)/\log \mu_h \sim \bar{c} h/\log \mu_h < \varepsilon$$
.

Si può assumere, per esempio, $\mu_h = h!$.

- 3. Teorema II. Sia $\Lambda(f) = +\infty$.
- a) Se per la componente g(z) di f(z), con la successione di lacune $\{p_h, q_h\}$, esiste una successione $\{u_h, v_h\}$ tale che

$$q_{h-1} \leq u_h \leq v_h \leq p_h \qquad (h = 1, 2, 3, \ldots)$$

(3.1)
$$|a_{u_h}|^{1/u_h} \to 1$$
 , $|a_{v_h}|^{1/v_h} \to 1$

$$(3.2) 0 < \liminf v_h/p_h \le \limsup u_h/q_{h-1} < + \infty,$$

allora da $\widetilde{g}(z) \subseteq g(z)$ segue

$$\gamma S(x) \leq \tilde{S}(x) < S(x)$$
 $(\gamma = \gamma(g, \tilde{g}) > 0).$

b) Fissati due numeri reali α e β tali che $0 \le \alpha \le \beta \le 1$, esistono f(z) (con $\Lambda(f) = +\infty$) che ammettono componenti g(z), g(z) per le quali si verifica

$$\tilde{g}(z) \subseteq g(z)$$
 $\alpha = \liminf \tilde{S}(x)/S(x) \leq \limsup \tilde{S}(x)/S(x) = \beta.$

DIMOSTRAZIONE.

a) Osserviamo che, nel caso in cui p_h/q_{h-1} si mantenga limitato, le condizioni (3.1) e (3.2) sono soddisfatte tutte le volte che in ogni tratto (q_{h-1}, p_h) , (h=1, 2, 3, ...) si può scegliere un intero w_h tale che $|a_{w_h}|^{1/w_h} \rightarrow 1$, e si può assumere $u_h = v_h = w_h$.

In ogni caso la condizione (3.2) dice che esistono due numeri $\eta > 0$ (abbastanza piccolo) e K > 0 (abbastanza grande) tali che $u_h < Kq_{h-1}$ e $v_h > \eta p_h$.

Sia $|\tilde{p}_h, \tilde{q}_h|$, (h = 1, 2, 3, ...), la successione delle lacune della componente lacunare $\tilde{g}(z)$. Essendo $\tilde{g}(z) \subseteq g(z)$, per h abbastanza grande è $\tilde{p}_h \leq p_h < q_h \leq \tilde{q}_h$ e anche $\tilde{q}_{h-1} \leq u_h \leq v_h \leq \tilde{p}_h$, perchè se così non fosse per la (3.1) la differenza $f(z) - \tilde{g}(z) = \tilde{\varphi}(z)$ non avrebbe raggio di convergenza > 1; di più, in forza del II teo-

rema di A. Osthowski, essendo f(z) prolungabile dovrà esistere un numero $\delta > 1$ tale che

$$\tilde{q}_{h-1} < u_h/\delta < v_h\delta < \tilde{p}_h$$
.

Ne segue, per h abbastanza grande,

$$\tilde{p}_h/\tilde{q}_{h-1} > \delta^2 v_h/u_h > \delta^2 \eta p_h/(Kq_{h-1}) = cp_h/q_{h-1}, \quad (0 < c < 1).$$

Si osservi ora che esiste un numero $\tau > 0$, indipendente da h, tale che, per h abbastanza grande, risulta

(3.3)
$$\log(\tilde{p}_{h}/\tilde{q}_{h-1}) > \tau \log(p_{h}/q_{h-1}).$$

Infatti, se $(p_h/q_{h-1})^{1/2} \ge 1/c$, è $\log{(\tilde{p}_h/\tilde{q}_{h-1})} \ge (1/2) \log{(p_h/q_{h-1})}$; se $(p_h/q_{h-1})^{1/2} < 1/c$, essendo in ogni caso $\tilde{p}_h/\tilde{q}_{h-1} > \delta^2 v_h/u_h \ge \delta^2$, è $2\log{\delta} < \log{(\tilde{p}_h/\tilde{q}_{h-1})} < \log{(p_h/q_{h-1})} < 2\log(1/c)$, e quindi $\log{(\tilde{p}_h/\tilde{q}_{h-1})} > 1 - \log{\delta} / \log{c} + \log{(p_h/q_{h-1})}$.

La (3.3) risulta così dimostrata, quando si assuma per τ il minore dei due numeri 1/2 e — $\log \delta / \log c$.

A questo punto poniamo

$$\begin{split} (I_k) &\equiv (q_{k-1} \leq n_l \leq p_k) \quad , \quad (\tilde{I}_k) \equiv (\tilde{q}_{k-1} \leq \nu_s \leq \tilde{p}_k), \\ S_k &= \sum_{n_l \in I_k} \frac{1}{n_l} \quad , \quad \tilde{S}_k = \sum_{\nu_s \in \tilde{I}_k} \frac{1}{\nu_s} \, . \end{split}$$

Allora risulta $S_k = \log{(p_k/q_{k-1})} + O(1/q_{k-1}), \ \tilde{S}_k = \log{(\tilde{p_k}/\tilde{q_{k-1}})} + O(1/\tilde{q_{k-1}}).$

Sia $q_{h-1} \leq x < q_h$; ci proponiamo di confrontare fra loro le somme

(3.4)
$$\begin{cases} S(x) = S_1 + S_2 + \dots + S_{h-1} + S_{h'}, & (S_h' = \theta S_h; \ 0 \leq \theta \leq 1) \\ \tilde{S}(x) = \tilde{S}_1 + \tilde{S}_2 + \dots + \tilde{S}_{h-1} + \tilde{S}_{h'}, & (\tilde{S}_h' = \bar{\theta} \tilde{S}_h; \ 0 \leq \bar{\theta} \leq 1). \end{cases}$$

La (3.3) ci dice che per k abbastanza grande è $\tilde{S}_k > \tau S_k + O(1/q_{k-1})$. Allo scopo di confrontare fra loro S_h' e \tilde{S}_h' suddivideremo l'intervallo (q_{h-1}, p_h) in tre intervalli parziali:

1)
$$p_h \leq x < q_h$$
. Risulta $\tilde{S}_h' > \tau S_h'$, essendo $\hat{S}_h' = \tilde{S}_h$ e $S_h' \leq S_h$.

2)
$$u_h \leq x < \tilde{p}_h$$
. È $\tilde{S}_h' = \sum_{\tilde{q}_{h-1} \leq v_s \leq x} \frac{1}{v_s}$ e
$$S_h' = \sum_{q_{h-1} \leq n_l \leq x} \frac{1}{n_l} = \sum_{q_{h-1} \leq n_l \leq \tilde{q}_{h-1}} \frac{1}{n_l} + \tilde{S}_h' \leq \log K + \tilde{S}_h' + O(1/q_{h-1}).$$

3)
$$q_{h-1} \leq x < u_h$$
. È $\tilde{S}_h' \geq 0$ e $S_h' \leq \log(u_h/\log q_{h-1}) + O(1/q_{h-1}) \leq \log K + O(1/q_{h-1})$.

In ogni caso, essendo $\tau \leq 1/2$, si può scrivere

(3.5)
$$\tilde{S}_{h}' > \tau S_{h}' - \log K - O(1/q_{k-1}).$$

Le (3.4) unite alla (3.5) dànno

$$\tilde{S}(x) > \tau S(x) - \log K - O(1)$$
, (essendo $\sum_{j=1}^{h-1} O(1/q_j) = O(1)$),

e poichè $S(x) \to +\infty$ (per $x \to +\infty$), risulta per x abbastanza grande

$$\tilde{S}(x) > (\tau/2)S(x)$$
.

b) Sia $\{\mu_h\}$ una successione crescente di interi μ_h $(h=1,\ 2,\ 3,\ ...)$ soddisfacente alla condizione $\mu_{h+1}/\mu_h \to +\infty$. Poniamo

$$f(z) = \sum_{h=1}^{\infty} P_h$$
 , $P_h = \frac{|z(1-z)|^{\mu_h}}{C_h}$, $C_h = \begin{pmatrix} \mu_h \\ [\mu_h/2] \end{pmatrix}$.

Fissato $\delta > 1$, poniamo $\tau = \delta^{\alpha}$, $\omega = \delta^{\beta}$ e siano $\{n_l\}$ (l = 1, 2, 3, ...) la successione degli interi n per cui

 $e \mid v_s \mid (s = 1, 2, 3, ...)$ la successione degli interi v per cui

$$\mu_b/\delta' < \nu < \mu_b \delta'$$
 $(h = 1, 2, 3, ...)$

dove il moltiplicatore $\delta' = \delta'(h)$ viene scelto con la legge seguente:

per
$$(2k)! < h \le (2k+1)!$$
 $\delta'(h) = \tau = \delta^{\alpha}$ $\{ (k=1, 2, 3, ...).$

Posto

$$\begin{split} I_{h} &\equiv (\mu_{h}/\delta < n < \mu_{h}\delta), \qquad \tilde{I}_{h} \equiv (\mu_{h}/\delta' < \nu < \mu_{h}\delta')\,, \\ S_{h} &= \sum_{n_{l} \in I_{h}} \frac{1}{n_{l}} \quad , \quad \tilde{S}_{h} = \sum_{\nu_{s} \in \tilde{I}_{h}} \frac{1}{\nu_{s}}\,, \end{split}$$

risulta

$$S_h \sim 2 \log \delta$$
 e $\tilde{S}_h \sim 2 \log \delta'$.

Sia
$$\mu_h/\delta \leq x < \mu_{h+1}/\delta$$
. Per $x \to +\infty$ è

$$2h \log \delta \sim \sum_{u=1}^{h} S_u \leq S(x) \leq \sum_{j=1}^{h+1} S_j \sim 2h \log \delta.$$

Poniamo

$$\sigma_{2k} = \sum_{(2k)\,!\,<\,h\,\leqq\,(2k+1)\,!} \tilde{S}_h \quad , \quad \sigma_{2k+1} = \sum_{(2k+1)\,!\,<\,h\,\leqq\,(2k+2)\,!} \tilde{S}_h \, :$$

risulta per $k \to +\infty$

$$\begin{split} &\sigma_{2k} \sim (2k) \,! \, 2k \cdot 2\alpha \log \delta &, & \sigma_{2k+1} \sim (2k+1) \,! \, (2k+1) \cdot 2\beta \log \delta, \\ &\sigma_{2k-2} = O(\sigma_{2k}/k^2) &, & \sigma_{2k-1} = O(\sigma_{2k+1}/k^2), \\ &\sum_{u=0}^k \sigma_{2u} = \sigma_{2k} (1 + O(1/k)) &, & \sum_{u=0}^k \sigma_{2u+1} = \sigma_{2k+1} (1 + O(1/k)). \end{split}$$

Per esaminare l'andamento del rapporto $\tilde{S}(x)/S(x)$ per $\mu_k/\delta \leq \leq x < \mu_{k+1}/\delta$, suddividiamo tale intervallo in due intervalli parziali:

1)
$$\mu_h \delta \leq x < \mu_{h+1}/\delta$$
.
Sia $(2k)! < h \leq (2k+1)!$. Risulta

$$\tilde{S}(x) = \sum_{u=1}^{h} \tilde{S}_{u} = \sigma_{0} + \sigma_{1} + \dots + \sigma_{2k-1} + \sigma'_{2k}$$

$$= \sigma_{2k-2}(1 + O(1/k)) + \sigma_{2k-1}(1 + O(1/k)) + \sigma'_{2k}$$

$$= \sigma_{2k-1}(1 + O(1/k)) + \sum_{u=(2k)!+1}^{h} \tilde{S}_{u}$$

$$= (2k-1)! (2k-1) \cdot 2\beta \log \delta (1 + O(1/k)) + \cdots + h - (2k)! \cdot 2\alpha \log \delta (1 + o(1)), \text{ per } k \to +\infty.$$

Ne segue che per $x \to +\infty$ lungo quegli intervalli è

$$\tilde{S}(x)/S(x) = \left\{ \frac{(2k-1)!(2k-1)}{h} \beta + \frac{h - (2k)!}{h} \alpha \right\} (1 + o(1)) \text{ per } k \to +\infty.$$

Poichè l'espressione entro parentesi $\{ \}$ al secondo membro è decrescente al crescere di h nell'intervallo $(2k)! < h \leq (2k+1)!$, basterà esaminare i casi h = (2k)! + 1 e h = (2k+1)!.

Per
$$h = (2k)! + 1 = (2k)! (1 + \eta_k), (\eta_k = 1/(2k)!), è$$

$$\tilde{S}(x)/S(x) = \{(1-1/(2k))\beta + \alpha/(2k)! \mid (1+o(1)) \rightarrow \beta.$$

Per h = (2k + 1)! è

$$\tilde{S}(x)/S(x) = \{(1-1/(2k)) \cdot \beta/(2k+1) + (1-1/(2k+1))\alpha \} (1+o(1)) \rightarrow \alpha.$$

Sia ora $(2k-1)! < h \leq (2k)!$. Risulta

$$\tilde{S}(x) = \sum_{u=1}^{h} \tilde{S}_u = \sigma_0 + \sigma_1 + ... + \sigma_{2k-2} + \sigma'_{2k-1}.$$

Il ragionamento analogo mostra che il rapporto $\tilde{S}(x)/S(x)$ si esprime asintoticamente mediante una funzione crescente al crescere di h nell'intervallo $(2k-1)! < h \leq (2k)!$ e che $\tilde{S}(x)/S(x) \rightarrow \alpha$ per h = (2k-1)! + 1 e $\tilde{S}(x)/S(x) \rightarrow \beta$ per h = (2k)!.

2)
$$\mu_h/\delta \leq x < \mu_h\delta$$
.
È $\tilde{S}(x) = \sum_{u=1}^{h-1} \tilde{S}_u + \tilde{S}_h'$.

Poichè è

$$0 < \tilde{S}_h' \leq 2\beta \log \delta + o(1)$$
 per $(2k+1)! < h \leq (2k+2)!$

$$0 < \tilde{S}_h' \leq 2\alpha \log \delta + o(1)$$
 per $(2k)! < h \leq (2k+1)!$

$$0 < \tilde{S}_h' \leq 2 \log \delta + o(1)$$
 e $S(x) \to +\infty$,

risulta

$$\tilde{S}(x)/S(x) = \binom{\sum_{u=1}^{h-1} \tilde{S}_u + \tilde{S}_{h'}}{\binom{\sum_{u=1}^{h-1} S_u + S_{h'}}{\binom{\sum_{u=1}^{h-1} S_u}{\sum_{u=1}^{h-1} S_u}} (1 + o(1)).$$

Si conclude che è

$$\alpha = \lim \inf \tilde{S}(x)/S(x) \leq \lim \sup \tilde{S}(x)/S(x) = \beta.$$

4. TEOREMA III. Sia $\psi(x)$ definita per x>0, positiva, monotona non decrescente, derivabile e sia

$$\psi(x) \to +\infty, \quad x\psi'(x) = 0$$
 (1) per $x \to +\infty$.

Esiste una funzione f(z) ultraconvergente di cui una componente lacunare g(z) verifica le proprietà seguenti:

i)
$$\gamma \psi(x) \leq S(x) \leq \psi(x)$$
 $(\gamma = \gamma(g) > 0)$

ii) per ogni $g(z) \subseteq g(z)$

$$\tilde{\gamma}\psi(x) \leq \tilde{S}(x) \leq \tilde{S}(x) \leq \psi(x)$$
 $(\tilde{\gamma} = \tilde{\gamma}(\tilde{g}, g) > 0),$

quando x è abbastanza grande.

DIMOSTRAZIONE.

1) Osserviamo subito che dall'ipotesi $x\psi'(x) < K$ segue

(4.1)
$$\psi(x) < K \log x + c$$
 $(K > 0, c \le 0).$

Quando è definitivamente $\psi(x) \ge \log x$, il Teor. III rientra nel Teor. I. Infatti dalla limitazione $\gamma \log x < S(x) < \log x$ segue $S(x) < \psi(x)$; inoltre per la (4.1) risulta

$$\psi(x)/K < \log x + c/K$$

$$\gamma \psi(x)/(2K) < \gamma \log x \qquad (\text{per } x \ge x_0)$$

e quindi

$$\gamma' \psi(x) < S(x), \quad (\gamma' = \gamma/(2K)).$$

Inoltre per qualunque $\tilde{g}(z) \subseteq g(z)$ è

$$\gamma''\psi(x) < \tilde{S}(x) \le S(x) < \psi(x)$$

per x abbastanza grande.

2) Sia ora $\psi(x') < \log x'$ per infiniti valori x' di x grandi quanto si vuole. Costruiamo una f(z) che verifichi le proprietà enunciate per g(z) e g(z).

Fissato un numero δ , $(1 < \delta < \min \{ \exp (1/8), \sqrt{1 + 1/K} \})$, scegliamo una successione $\{\mu_h\}$ (h = 1, 2, 3, ...) crescente di interi positivi nel modo seguente: detto x_h il minimo valore di x pel quale è soddisfatta l'equazione $h = \psi(x)$ (h = 1, 2, 3, ...), poniamo $\mu_h = [x_h/\delta]$.

Per le ipotesi su $\psi(x)$, ad ogni h abbastanza grande si può coordinare uno ed un solo x_h tale che sia $h = \psi(x_h)$. e risulta $x_h = \chi(h)$, dove χ indica una funzione monotona non decrescente di h; inoltre $x_h \to +\infty$ e $\mu_h \to +\infty$ per $h \to +\infty$.

Vediamo che la successione $\{\mu_h\}$ verifica la condizione lim inf $\mu_{h+1}/\mu_h > 1$: infatti $\mu_{h+1}/\mu_h \sim x_{h+1}/x_h$ e d'altronde è

$$\psi(x_{h+1}) = \psi(x_h) + (x_{h+1} - x_h)\psi(\bar{x}_h), \quad (x_h < \bar{x}_h < x_{h+1})$$

e quindi

$$h + 1 < h + (x_{h+1} - x_h) \cdot K/x_h$$

da cui

$$x_{h+1}/x_h > 1 + 1/K$$
.

Consideriamo la successione $\mid \mu_k \mid_{\delta} (h = 1, 2, 3, ...)$ degli interi n soddisfacenti ad una almeno delle condizioni

$$\mu_h/\delta < n < \mu_h\delta$$
 $(h = 1, 2, 3, ...);$

esistono funzioni f(z) (prolungabili e) ultraconvergenti lungo la successione $\{\mu_h \mid \delta' \text{ complementare di } \{\mu_h \mid \delta \text{ e sia } g(z) = \sum a_{n_l} z^{n_l} \}$ la componente lacunare per la quale $\{n_l\}$ coincide con $\{\mu_h \mid \delta \}$.

Sia $\mu_h \delta < x \leq \mu_{h+1} \delta$. Allora risulta $S(x) \sim 2h \log \delta$. Osserviamo che per la definizione di x_h è

$$\delta \mu_h \leq x_h < \delta \mu_h + \delta$$

e quindi

$$\psi(\delta\mu_h) \leq h < \psi(\delta\mu_h + \delta), \quad \psi(\delta\mu_{h+1}) \leq h + 1 < \psi(\delta\mu_{h+1} + \delta)$$

da cui segue

$$\begin{array}{ccc} & \psi(\delta\mu_{h+1})-1 \leq h < \psi(\delta\mu_{h+1}+\delta)-1 \\ & \psi(\delta\mu_{h+1})/2 < h < \psi(\delta\mu_{h+1}+\delta) & \text{per } h \geq h_0 \,. \end{array}$$

La parte a sinistra della (4.2) ci dà, per x abbastanza grande,

$$S(x) > \gamma \psi(x)$$
.

Consideriamo la parte a destra della (4.2). Per ipotesi è $\psi'(x) < K/x$ e quindi

$$\psi(\delta\mu_{h+1} + \delta) - \psi(\delta\mu_{h+1}) = \delta\psi'(\bar{x}), \quad (\delta\mu_{h+1} < \bar{x} < \delta\mu_{h+1} + \delta),$$

$$\psi(\delta\mu_{h+1} + \delta) < \psi(\delta\mu_{h+1}) + \delta K/\bar{x},$$

e poichè $\psi(x) \to +\infty$ e $K/x \to 0$, per $h>h_1$ abbastanza grande risulta $\psi(\delta\mu_{k+1}+\delta)<2\psi(\delta\mu_{k+1})$.

Dalla (4.2) si ottiene allora

$$h < 2\psi(\delta\mu_{h+1})$$
 , $h+1 < 4\psi(\delta\mu_{h+1})$
 $h < 4\psi(\delta\mu_h)$ (per $h \ge h_1 + 1$)

ed essendo $S(x) \sim 2h \log \delta$ e $\delta < \exp(1/8)$ si ha

$$S(x) < \psi(x)$$
.

La componente g(z) verifica dunque la proprietà i).

Sia $\tilde{g}(z)$ una qualunque componente lacunare $\subseteq g(z)$; detta $\mid \tilde{p}_h, \quad \tilde{q}_h \mid (h=1, 2, 3, ...)$ la successione delle sue lacune è $\tilde{p}_h \subseteq p_h < q_h \subseteq \tilde{q}_h$, ed è possibile trovare un δ' $(1 < \delta' < \delta)$ tale che

$$\mu_h \delta' < \tilde{p}_h < \tilde{q}_h < \mu_{h+1}/\delta'$$

Per la successione $|u_s|$ degli interi u appartenenti a $|\mu_h|_{\delta'}$ si può ripetere l'analogo ragionamento sostituendo δ' a δ e risulta verificata la limitazione per la somma S'(x) corrispondente a $|u_s|$

$$\tilde{\gamma}\psi(x) < S'(x) < \psi(x);$$

essendo $|u_s| \subset |v_s| \subset |n_l|$, la $\tilde{g}(x)$ verifica ii).