BOLLETTINO UNIONE MATEMATICA ITALIANA

FRANCESCO SPERANZA

Sulle trasformazioni puntuali fra spazi proiettivi sovrapposti.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 10 (1955), n.1, p. 61–68.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1955_3_10_1_61_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Sulle trasformazioni puntuali fra spazi proiettivi sovrapposti.

Nota di Francesco Speranza (a Bologna)

Sunto. - Come il paragrafo 1.

1. Nella presente Nota viene studiata una trasformazione puntuale fra due spazi lineari S_r , ad r dimensioni, sovrapposti, nell'intorno di una coppia regolare A, \overline{A} di punti corrispondenti distinti, dal punto di vista della geometria proiettiva. Nei nn. 2, 3, 4 viene considerato il caso generale, nel quale, per la determinazione di un riferimento intrinseco, basta l'intorno del 1º ordine. Nel n. 5 viene poi considerato il caso in cui la proiettività 'subordinata dalla trasformazione fra le stelle A, \overline{A} è una prospettività, e si determina un riferimento intrinseco, ricorrendo all'intorno del 2º ordine (¹).

In una successiva Nota verranno studiati i numerosi casi particolari qui omessi.

2. Sia T una trasformazione puntuale fra due S_r sovrapposti, e sia A, \overline{A} una coppia regolare di punti corrispondenti. T subordina fra le stelle Σ_{r-1} , $\overline{\Sigma}_{r-1}$ di centri A, \overline{A} un'omografia Ω . Indicata con S_1 la retta A, considero le rette $\Omega^{-1}S_1$ ed ΩS_1 , appartenenti ad A e \overline{A} rispettivamente; suppongo $\Omega^{-1}S_1 \neq S_1$; ne segue $\Omega S_1 \neq S_1$.

 $\Omega^{-1}S_1$ ed S_1 (ed analogamente ΩS_1 ed S_1) hanno in comune il punto $A(\overline{A})$; lo spazio congiungente ha dimensione due, e lo indico con $S_2(\overline{S}_2)$. Sia S_2 che \overline{S}_2 appartengono ad entrambe le stelle Σ ; inoltre $\Omega S_2 = \overline{S}_2$. Considero i piani $\Omega^{-1}S_2$ ed $\Omega \overline{S}_2$ appartenenti ad A, \overline{A} rispettivamente; suppongo $\Omega^{-1}S_2 + S_2$, da cui segue: $S_2 + \overline{S}_2$; $\overline{S}_2 + \Omega \overline{S}_2$. S_2 ed $\Omega^{-1}S_2(\overline{S}_2 + \Omega \overline{S}_2)$ hanno in comune $\Omega^{-1}S_1(\Omega S_1)$; gli spazi congiungenti saranno $S_2(\overline{S}_3)$. Essi appartengono ad entrambe le stelle Σ .

Posso, con questo metodo, definire due successioni di spazi, tali che S_k ed \overline{S}_k appartengano ad entrambe le stelle Σ (in quanto contengono S_{k-1} ed \overline{S}_{k-1} rispettivamente); $\Omega^{-1}S_k$ ed S_k ($\Omega \overline{S}_k$ ed \overline{S}_k) hanno in comune $\Omega^{-1}S_{k-1}$ ($\Omega \overline{S}_{k-1}$). Supposto che $\Omega^{-1}S_k + S_k$; $\Omega \overline{S}_k + S_k$

⁽¹⁾ Per lo studio di una trasformazione puntuale fra spazi lineari, si veda: M. VILLA, Le trasformazioni puntuali fra due spazi lineari. I. Intorno del 2º ordine. II. Intorno del 3º ordine. Riferimenti intrinseci. III. Trasformazioni cremoniane osculatrici, Atti Accad. Naz. Lincei, Rend. (8) 4, 55-61, 192-196, 295-303 (1948).

 $+S_k$, sono definiti gli spazi $S_{k+1} \equiv |S_k, \Omega^{-1}S_k|$ (°), $\overline{S}_{k+1}|\overline{S}_k, \Omega \overline{S}_k|$. Le successioni terminano con $S_{r-1}, \overline{S}_{r-1}$. Si noti che $\Omega^{-1}S_i$ ed $\Omega^{-1}S_j$ si appartengono, come pure $\Omega \overline{S}_i$ ed $\Omega \overline{S}_j$.

Considero gli r+1 iperpiani

$$\begin{split} S_{r-1}^{(1)} &\equiv \, \Omega^{-1} S_{r-1} &\equiv \, \mid \, \Omega^{-1} S_{r-2} \,, \,\, \overline{A} \mid \\ S_{r-1}^{(8)} &\equiv \, \mid \, \Omega^{-1} S_{r-3} \,, \,\, \Omega \overline{S}_1 \mid \, \dots \,\, S_{r-1}^{(k)} \equiv \, \mid \, \Omega^{-1} S_{r-k} \,, \,\, \Omega \overline{S}_{k-2} \mid \, \dots \\ S_{r-1}^{(r)} &\equiv \, \mid \, A, \,\, \Omega \overline{S}_{r-2} \mid \,\, S_{r-1}^{(r+1)} \equiv \, \Omega \overline{S}_{r-1} \,. \end{split}$$

Assumo l'iperpiano $S_{r-1}^{(k)}$ come faccia $x_k = 0$ della piramide fondamentale, che resta così individuata. I punti A, \overline{A} hanno coordinate $(0, \dots, 0, 1)$ e $(1, 0, \dots, 0)$ rispettivamente. Se indico con $X_k = \frac{x_k}{x_{r+1}}$, $\overline{X_k} = \frac{\overline{x_k}}{\overline{x_1}}$ le coordinate non omogenee di punto in S_r ed $\overline{S_r}$ rispettivamente, le equazioni di T possono scriversi:

$$\tilde{X_i} = F_i(X_k) \qquad (2 \le i \le r+1).$$

Mediante gli sviluppi in serie di Mac Laurin dei secondi membri troncati ai termini di 1° grado, si hanno le equazioni, in coordinate omogenee, di Ω :

(2)
$$\bar{X}_i = \sum_{1}^{r} a_{i-1}^k X_k \qquad (2 \le i \le r+1)$$

Affinchè la piramide fondamentale coincida con quella or ora individuata, basta tener presente che la S_1 ha equazioni: $x_2 = x_3 = \dots = x_r = 0$, mentre la $\Omega^{-1}S_1$ e la $\Omega \overline{S}_1$ hanno equazioni $x_1 = x_2 = \dots = x_{r-1} = 0$, $x_3 = x_4 = \dots = x_{r+1} = 0$; esse infatti appartengono agli spazi $\Omega^{-1}S_1$ ed $\Omega \overline{S}_1$ rispettivamente. In generale le equazioni di $\Omega^{-1}S_k$, S_k , \overline{S}_k , $\Omega \overline{S}_k$ sono rispettivamente

$$x_1 = ... x_{r-k} = 0; x_2 = ... = x_{r-k+1} = 0; x_{k+1} = ... = x_r = 0; x_{k+2} = ... = x_{r+1} = 0$$

Seguono le relazioni

$$a_{i}^{h} = \delta_{i}^{h} a_{k} \qquad (1 \leq i, \ k \leq r)$$

(dove $\delta_i^k = 1$, se i = k; = 0 se $i \neq k$).

Le equazioni di T diventano

$$(4) \overline{X}_{k+1} = a_k X_k + [2] (1 \le k \le r)$$

(2) Con questa notazione intendo lo spazio congiungente S_k ed $\Omega^{-1}S_k$.

3. Per determinare il punto unità, considero le ∞^r omografie tangenti a T in (A, \overline{A}) , le quali in generale posseggono r+1 punti uniti. Questi segnano una g_{r+1}^r sulla C^r razionale normale, luogo delle intersezioni di rette delle stelle $\Sigma_{r-1}, \overline{\Sigma}_{r-1}$ corrispondenti in Ω ed incidenti (3). Tale g_{r+1}^r ha r+1 punti (r+1)-pli U_i . corrispondenti ad altrettante omografie r volte paraboliche. Assumo uno di questi punti come punto unità; il sistema di riferimento è così determinato. Si noti che, mentre la piramide fondamentale è individuata senz'ambiguità, il punto unità — e quindi anche il riferimento — può scegliersi nel modo indicato in r+1 modi equivalenti.

Le equazioni delle omografie tangenti sono:

(5)
$$\begin{cases} \rho \bar{x}_1 = \sum_{i=1}^{r} \lambda_i x_i + x_{r+1} \\ \rho \bar{x}_k = a_{k-1} x_{k-1} \end{cases} \quad (2 \le k \le r+1)$$

di equazioni caratteristiche

(6)
$$\rho^{r+1} - \sum_{1}^{r} (\lambda_k \prod_{j=1}^{k-1} a_j) \rho^{r-k+1} - \prod_{j=1}^{r} a_j = 0.$$

Indicata con ρ_i una delle radici (r+1)-esime di $-\prod_1^r a_j$, per le r+1 omografie r volte paraboliche l'equazione caratteristica diviene

$$(\rho + \rho_i)^{r+1} = 0$$

e quindi dev'essere

$$\lambda_h = -\binom{r+1}{i} \frac{\rho_i^h}{\prod_{j=1}^{h-1} a_j}.$$

I punti U_i hanno quindi coordinate non omogenee

$$X_k = (-1)^{r-k+1} \frac{\rho_i^{r-k+1}}{\prod\limits_{j=1}^{r} a_j}.$$

Assumendo il punto unità in uno dei punti U_i si ottiene $a_k = \rho_i = (-1)^r$; le equazioni canoniche di T sono perciò

(7)
$$\overline{X}_k = (-1)^n X_k + [2] (4).$$

- (3) BERTINI, Geometria proiettiva degli iperspazi (Principato, Messina) pag. 345 e segg. (1923).
- (4) La piramide fondamentale è strettamente legata alla C^r . Infatti le equazioni di questa (che si ottengono senza difficoltà scrivendo la condizione

- 4. L'intorno del 1° ordine è sufficiente a fissare il riferimento; d'altra parte esso non ha alcun invariante proiettivo. Gli $\frac{r^3+r^2}{2}$ coefficienti del 2° ordine sono invece tutti invarianti; si noti che per r=2 ed r=3 fra le rette caratteristiche non sussiste alcun legame (per r=3 le coordinate di dette rette possono prendersi per dare un significato geometrico a 14 espressioni nei 18 coefficienti del 2° ordine; altre 4 espressioni si ottengono considerando ad es. le tangenti asintotiche delle calotte σ_2 , σ_2 corrispondenti in T^{-1} alle calotte dei piani $x_2=0$, $x_3=0$ di centro \overline{A}) (5). Per $r\geq 4$, invece, le coordinate delle rette caratteristiche sono $(r-1)(2^r-1)>$ $>\frac{r^3+r^2}{2}$ e quindi fra tali coordinate sussistono delle relazioni a priori. Ciò accade anche se l'intorno del 1° ordine è particolare.
- 5. Dei casi particolari in relazione all'intorno del 1º ordine di T mi limiterò qui a trattare quello di una coppia (A, \overline{A}) di punti corrispondenti, tale che l'omografia Ω è una prospettività.

Assumo i vertici (0, ..., 0, 1) e (1, 0, ..., 0) in $A \in \overline{A}$, e i rimanenti in altrettanti punti dell' S_{r-1} di prospettività. Alle equazioni di Ω , che hanno la forma (2), debbo imporre: che la retta $x_2 = \ldots = x_r = 0$ sia unita; che alla retta $x_1 = \ldots = x_{j-1} = x_{j+1} = \ldots = x_r = 0$ corrisponda in Ω la retta $x_2 = \ldots = x_{j-1} = x_{j+1} = \ldots = x_{r+1} = 0$; ottengo

$$a^{k}_{i-1} = \delta^{k}, \ a_{k} \quad (1 < i-1, \ k < r)$$

e quindi le equazioni di Ω sono del tipo

(8)
$$\begin{cases} \overline{X}_k = a_k X_k \\ \overline{X}_{r+1} = a_{r+1} X_1 \end{cases} \quad (2 \le k \le r).$$

d'incidenza per due rette appartenenti ai sistemi Σ) sono nel sistema fissato:

$$x_i = \lambda^{r-i+1} \mu^{i-1}$$
 $(1 \leq i \leq r+1)$

dove λ e μ sono parametri omogenei. L' S_k osculatore a C^r in A ha equazioni: $x_1 = ... = x_{r-k} = 0$, e coincide quindi con $\Omega^{-1}S_k$. Analogamente l' S_k osculatore a C^r in \overline{A} è $\Omega \overline{S}_k$.

(5) Significati geometrici di altre espressioni si ottengono considerando le omografie caratteristiche, che subordinano su una qualsiasi r-pla di rette caratteristiche le relative proiettività caratteristiche del VILLA [M. VILLA, Trasformazioni quadratiche osculatrici ad una corrispondenza puntuale fra piani proiettivi, Acc. Ital. Rend., (7) 3, 710-724, (1942)]; oppure l'omografia locale [E. Čech, Géométrie projective différentielle des correspondances entre deux espaces. I. « Cas. Pro Pest. Mat. a Fys. » 74, pp. 32-48].

Le ∞^r omografie tangenti subordinano sulla $A\overline{A}$ ∞^1 proiettività, i cui punti uniti segnano una g_2^1 sulla retta. I punti doppi della serie corrispondono a due proiettività paraboliche. Le equazioni delle ∞^1 proiettività sono

$$\begin{cases} \rho \bar{x}_{1} = \lambda x_{1} + x_{r+1} \\ \rho \bar{x}_{r+1} = a_{r+1} x_{1} \end{cases}$$

e le proiettività paraboliche corrispondono ai valori $\lambda = \pm 2\sqrt{-a_{r+1}}$ ed i loro punti uniti U_i hanno coordinate

$$X_1 = \frac{\pm 1}{V - a_{r+1}}; X_2 = \dots = X_r = 0.$$

Assumo uno di questi punti come punto (1, 0, ..., 0, 1); si ha

$$a_{r+1} = -1.$$

Inoltre, prese due rette corrispondenti in Ω

$$X_1; X_2; \dots; X_r = \lambda_1; \lambda_2; \dots; \lambda_r; \ X_2; X_3; \dots; X_r; X_{r+1} = a_2\lambda_2; a_3\lambda_3; \dots; a_r\lambda, :-\lambda_1 = a_2\lambda_2; a_2$$

la condizione d'incidenza è espressa dall'annullarsi della matrice

e. affinchè sia identicamente soddisfatta, dev'essere

$$a_2 = a_3 = \dots = a_r = \alpha$$
.

Le due rette s'incontrano nel punto di coordinate non omogenee $\left(-\alpha, -\alpha \frac{\lambda_2}{\lambda_1}, -\alpha \frac{\lambda_3}{\lambda_1}, \dots, -\alpha \frac{\lambda_k}{\lambda_1}, \dots, -\alpha \frac{\lambda_r}{\lambda_1}\right)$, e l'equazione dell'iperpiano di prospettività è $X_1 = -\alpha$.

Se K è l'intersezione di tale S_{r-1} con $A\overline{A}$, si ha

$$(A\overline{A}KU_1) = (0, \infty, -\alpha, \pm 1) = \pm \alpha.$$

Vale la seguente proprietà: le omografie tangenti hanno tutte un S_{r-2} di punti uniti; fra di esse ve ne sono due paraboliche, ed un'omologia, generale se $\alpha^2 = 1$, speciale se $\alpha^2 = 1$, di caratteristica α^{-2} .

Le ∞' omografie tangenti hanno equazione

(9)
$$\begin{cases} \bar{\rho x_1} = \sum_{1}^{r} \lambda_i x_i + x_{r+1}, \\ \bar{\rho x_k} = \alpha x_k \\ \bar{\rho x_{r+1}} = -x_1 \end{cases} \quad (2 \le k \le r)$$

e le equazioni caratteristiche sono

$$A(\rho) \equiv (\alpha - \rho)^{r-1}(\rho^2 - \lambda_1 \rho + 1) = 0.$$

La soluzione $\rho = \alpha$ abbassa a 2 la caratteristica del determinante A (e solo α può abbassarla); le omografie hanno perciò tutte un S_{r-2} di punti uniti, di equazioni: $x_1 = -\alpha x_{r+1}$, $\sum_{j=1}^{r} \lambda_j x_j + (\lambda_1 - \alpha) x_{r+1} = 0$; e, indicata con ρ_j una delle radici dell'equazione quadratica. i punti uniti U_j^* esterni ad S_r , hanno coordinate ($-\rho_j$, 0, 0, 1), e quindi gl'invarianti valgono $(A\overline{A}U_j^*K) = \frac{\rho_j}{\alpha}$. Per $\lambda_1 = \pm 2$, $U_1^* = U_2^* = U_1$, e quindi le omografie hanno

Per $\lambda_1 = \pm 2$, $U_1^* \cong U_2^* = U_1$, e quindi le omografie nanno carattere parabolico; gli invarianti valgono $\frac{\lambda_1}{2\alpha}$.

Per $\lambda_1=\alpha+\frac{1}{\alpha}$, uno dei punti U,* cade in S_{r-2} , e l'omografia ha carattere speciale; si ha un'omologia quando la caratteristica di $A(\alpha)$ è 1, cioè quando $\lambda_k=0$ $(k\geq 2)$. Le equazioni dell'omologia tangente sono quindi

$$\begin{cases}
\rho \bar{x}_1 = \left(\alpha + \frac{1}{\alpha}\right) x_1 + x_{r+1} \\
\rho \bar{x}_k = \alpha x_k \\
\rho \bar{x}_{r+1} = -x_1
\end{cases}$$

ed essa è generale se $\alpha^2 \neq 1$, speciale se $\alpha^2 = 1$; l'iperpiano d'omologia ha equazione $X_1 = -\alpha$ ed è perciò l'iperpiano di prospettività; il centro U ha coordinate $\left(-\frac{1}{\alpha}, 0, ..., 0, 1\right)$ e quindi la caratteristica vale $(A\overline{A}UK) = \alpha^{-2}$.

Le equazioni di T hanno la forma

$$\tilde{X}_{k} = \alpha X_{k} + \Sigma_{ij} a_{(k)}^{ij} X_{i} X_{j} + [3]$$

$$\tilde{X}_{r+1} = -X_{1} + \Sigma_{ij} a_{(r+1)}^{ij} X_{i} X_{j} + [3]$$

essendo le Σ estese a tutte le combinazioni con ripetizione di classe 2 degli indici i, j.

Per terminare di fissare il riferimento, ricorro all'intorno del 2° ordine. Suppongo che da A escano almeno r rette caratteristiche distinte fra di loro e dalla $A\overline{A}$; le assumo come rette

(10)
$$x_1 = \dots = x_{k-1} = x_{k+1} = \dots = x_r = 0$$
 $(2 \le k \le r)$
(10') $x_1 = \dots = x_r$;

il riferimento è cosí fissato. Affinche la (10) sia caratteristica, deve annullarsi la matrice

da cui

(11)
$$a_{h}^{kk} = \delta_h^k a_k \qquad (2 \le k, h \le r+1).$$

Affinchè la (10') sia caratteristica, deve annullarsi la matrice

$$\left\| \begin{array}{cccc} \alpha & ... & -1 \\ \Sigma \, a_{(2)}^{ij} \, ... & \Sigma \, a_{(r+1)}^{ij} \end{array} \right\|$$

cioè

(11')
$$\Sigma a_{(2)}^{ij} = ... = \Sigma a_{(r)}^{ij} = - \alpha \Sigma a_{(r+1)}^{ij}.$$

Quindi la forma canonica delle equazioni di Tè

(12)
$$\begin{cases} \overline{X}_{k} = \alpha X_{k} + b_{k} X_{1}^{2} + a_{k} X_{k}^{2} + \Sigma_{(ij)} a_{(k)}^{ij} X_{i} X_{j} + [3] \\ \overline{X}_{r+1} = -X_{1} + b_{r+1} X_{1}^{2} + \Sigma_{(ij)} a_{(r+1)}^{ij} X_{i} X_{j} + [3] \end{cases}$$

essendo i coefficienti $a^{ij}_{(k)}$ legati dalle (11'); le $\Sigma_{(ij)}$ sono estese a tutte le combinazioni semplici degli indici ij.

Si hanno quindi $\frac{r^3-r^2+2r}{2}$ invarianti al 2º ordine. Considerate le restanti 2^r-r-1 rette caratteristiche, le loro coordinate, in numero di $(r-1)(2^r-r-1)$, danno il significato di detti invarianti (per $r \ge 5$). Si possono pure considerare le $\binom{2^r-1}{r}$ omografie caratteristiche, in particolare quella che subordina sulle r rette caratteristiche considerate le proiettività caratteristiche (°).

Determino quest'ultima nel caso r=3. Considerata, ad es., la coppia di rette $x_1=x_2=0$, $x_2=x_4=0$, l'equazione di una proiettività che faccia corrispondere A ed A è

$$\bar{z} = \frac{\rho z}{\sigma z + 1} = \rho z - \rho \sigma z^2 + [3]$$

dove

$$z=rac{x_3}{x_4}, \qquad \bar{z}=rac{\bar{x}_3}{\bar{x}_1}.$$

Affinchè essa sia caratteristica, dev'essere $\rho = \alpha$; $\sigma = -\frac{a_{(3)}^{55}}{\alpha}$, e

(6) Cfr. la nota (5).

quindi l'equazione diviene

$$-\frac{a_{(3)}^{33}}{\alpha}z\bar{z}+\bar{z}-\alpha z=0.$$

Una generica omografia tangente subordina sulle rette in questione la proiettività

$$\lambda_{z}\bar{z} - \alpha z + \bar{z} = 0,$$

come risulta dalla (9) per r=3, e, affinchè questa sia caratteristica, dev'essere $\lambda_3=-\frac{a_{(3)}^{33}}{\alpha}$. Analogamente

$$\lambda_2 = -\frac{a_{(2)}^{22}}{\alpha} \qquad \lambda_1 = \frac{-\sum\limits_{ij} a_{(2)}^{ij} + a_{(2)}^{22} + a_{(3)}^{33}}{\alpha}.$$