BOLLETTINO UNIONE MATEMATICA ITALIANA

GIUSEPPE PALAMÀ

Relazioni tra i polinomi associati alle funzioni di Laguerre e di Hermite.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 9 (1954), n.1, p. 64–66.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1954_3_9_1_64_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Relazioni tra i Polinomi associati alle funzioni di Laguerre e di Hermite.

Nota di Giuseppe Palama (a Lecce)

Santo. Su stabiliscono delle relazioni tra i Polinomi associati alle funzioni di Laguerre e di Hermite di 1ª e 2ª specie, analoghe a quelle che legano gli stessi Polinomi di Laguerre e di Hermite

I polinomi $G_n(x)$, di grado n, definiti dalle

(1)
$$H_n(x)G_n(x) - H_{n+1}(x)G_{n-1}(x) = n!, \quad G_0(x) = 1,$$

ove $H_n(x)$ è il polinomio di Hermite di ordine n, si dicono polinomi associati ai polinomi di Hermite (1) mentre abbiamo detto, polinomi associati alle funzioni di Laguerre di 1^n e 2^n specie, i polinomi $P_n^{(2)}(x)$, di grado n-1, definiti dalle (2)

$$L_n^{(\alpha)}(x)P_{n+1}^{(\alpha)}(x) - L_{n+1}^{(\alpha)}(x)P^{(\alpha)}(x) = (n+1)! \Gamma(\alpha+1)\Gamma(\alpha+n+1)$$
$$P_0^{(\alpha)}(x) = 0, \qquad P_1^{(\alpha)}(x) = 1.$$

Ànalogamente a quanto accade per i $G_n(x)$, i $P_n^{(\alpha)}(x)$ figurano nella relazione (3)

$$l_n^{(\alpha)}(x) = \frac{\Gamma(\alpha+1)}{\sqrt{2\pi}} \left[L_n^{(\alpha)}(x) I_{\alpha}(x) + P_n^{(\alpha)}(x) \frac{e^x}{x^{\alpha}} \right],$$

ove $l_n^{(\alpha)}(x)$ e la funzione di Laguerre di 2^a specie (4), e

$$I_{\alpha}(x) = \int_{0}^{x} \frac{e^{x}}{x^{\alpha+1}} dx$$

- (4) Cfr P. APPELL et J KAMPE DE FERIET, Hypergeométriques et Hyperspheriques-Polynomes d'Hermite, Paiis, (1926). pp 360-361, ove vi e un cenno a tali polinomi
- (2) Cfr G. Palama, Sul Wronskiano delle funzioni di Laguerre di 1^a e 2^a Specie e su dei polinomi ad esse associati, « Boll dell'Un Mat Ital », 3, 8, (1953), pp 185-193, IDEM, Relazioni integrali tra le funzioni d'Hermite e di Laguerre di 1^a e 2^a specie, e su dei polinomi ad esse associati, « Rivista di Mat dell'Univ di Parma », 4, (1953), pp. 105-122.
 - (3) Cfr. 11 primo dei lavori cit. in (2).
- (4) Per le notizie bibliografiche relative alle funzioni di LAGUERRE di 2ª specie, cfi il primo dei lavori cit in (2).

È interessante notare che, delle relazioni molto analoghe a quelle che collegano i polinomi di Laguerre e di Hermite, sussistono tra i polinomi associati alle funzioni di Laguerre e di Hermite di 1^a e 2^a specie.

Cioè noi dimostreremo le seguenti formule, analoghe a quelle di Szegö,

(2)
$$G_{2n-1}(x) = (-2)^{n-1} n! x P_n^{(-1/2)}(x^2/2)$$

(3)
$$G_{2n}(x) = (-2)^{n-1} n! P_n^{(1/2)}(x^2/2) + \frac{1}{x} H_{2n+1}(x),$$

ed inoltre la formula limite (5)

(4)
$$\frac{(-1)^{n-1}}{n!} G_{n-1}(x) = \lim_{h \to 0} \left[h^{n-1} P_n^{\left(\frac{1}{h^2} + k\right)} \left(\frac{x}{h} + \frac{1}{h^2} \right) \right]$$

Si noti la quasi perfetta analogia tra la (2) e la (4) con le corrispondenti dei polinomi di Hermite e di Laguerre. Invece è minore l'analogia tra la (3) e quella dello stesso tipo dei polinomi di Hermite e di Laguerre per la comparsa nella (3) dell'ultimo termine $\frac{1}{x}H_{2n+1}(x)$.

1. Innanzi tutto ricordiamo che i $G_n(x)$ e i $P_n^{(\alpha)}(x)$ soddisfano alle stesse formule ricorrenti rispettivamente degli $H_n(x)$ e $L_n^{(\alpha)}(x)$, avendosi

(5)
$$G_n(x) - xG_{n-1}(x) + nG_{n-2}(x) = 0, \quad G_0(x) = 1, \quad G_1(x) = x;$$

(6)
$$(n+1)P_{n+1}^{(\alpha)}(x) - (2n+\alpha+1-x)P_n^{(\alpha)}(x) + (\alpha+n)P_{n-1}^{(\alpha)}(x) = 0,$$

$$P_0^{(\alpha)}(x) = 0, \qquad P_1^{(\alpha)}(x) = 1.$$

Inoltre è facile dimostrare, a mezzo della prima delle (5) e della analoga degli $H_n(x)$, rispettivamente le due seguenti formule

(7)
$$G_{n+2}(x) = (x^2 - 2n - 3)G_n(x) - n(n+1)G_{n-2}(x),$$

(8)
$$H_{n+2}(x) = (x^2 - 2n - 1)H_n(x) - n(n-1)H_{n-2}(x).$$

(5) L'analoga alla (4) del testo, per i polinomi di Hermite e di Laguerre è stata stabilita, quale generalizzazione di una nostra, da L. Toscano: Cfr. L. Toscano, Formule limiti sui polinomi di Laguerre, « Boll. dell'Un. Mat. Ital. », 2, 1, (1939). pp. 337-339; G. Palamà, Sulla soluzione polinomiale della $(a_1x + a_0)y'' + (b_1x + b_0)y' - nb_1y = 0$, « Idem », id., pp. 27-35.

2. Per provare ora la (2), notiamo innanzi tutto che essa vale per n=1, 2, 3; inoltre si verifica facilmente che se la (2) sussiste per tutti i valori dell'indice $\leq n$, vale anche per l'indice n+1. Basta difatti porre nella (6) $\alpha=-1/2$, cambiarvi x in $x^2/2$ e moltiplicare poi) per $(-2)^{n-1}n!x$, per dedurre, tenendo presente la (7), quanto si deve dimostrare.

In modo analogo se si fa nella (6) $\alpha = 1/2$, vi si muta x in $x^2/2$ e si moltiplica per $(-2)^{n-1}n!$, si ha, con le (7) e (8), che la (3) (che vale anch'essa per n = 1, 2, 3), ammessa vera per n = 1, ..., n, vale anche per l'indice n + 1.

- 3. Anche la (4), che sussiste per i primi valori di n, si dimostra facilmente con il metodo d'induzione completa, servendosi della prima delle (5) e della (6). Basta infatti cambiare nella (6) α in $\frac{1}{h^2} + k$, x in $\frac{x}{h} + \frac{1}{h^2}$, moltiplicare per $(-h)^n \cdot n!$ e passare, come è lecito, al limite per ottenere che, se la (4) vale per tutti i valori dell'indice $\leq n$, vale anche per l'indice n + 1.
 - 4. Infine osserviamo che analoga alla (1) è la seguente

(9)
$$H_n(x)G_{n+1}(x) - H_{n+2}(x)G_{n-1}(x) = n!x,$$

che non è stata forse ancora notata.

Per ottenere la (9), basta porre, nella identità

$$(n + 1)H_n(x)G_{n-1}(x) = (n + 1)H_n(x)G_{n-1}(x),$$

al posto di $(n + 1G_{n-1}(x))$ del primo membro e di $(n + 1)H_n(x)$ del secondo, i valori che per queste espressioni si traggono dalla (5) e dalla sua analoga per gli $H_n(x)$, quando vi si sia mutato n in n + 1, n + 2 rispettivamente, e tener presente poi la (1) stessa.