BOLLETTINO UNIONE MATEMATICA ITALIANA

Adriano Barlotti

Alcune osservazioni sulle quartiche piane dotate di un tacnodo simmetrico.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 9 (1954), n.1, p. 55–58.

Zanichelli

 $<\!\!\mathtt{http://www.bdim.eu/item?id=BUMI_1954_3_9_1_55_0}\!\!>$

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.



Alcune osservazioni sulle quartiche piane dotate di un tacnodo simmetrico.

Nota di Adriano Barlotti (a Firenze).

- Sunto. Si stabilisce una proprietà (che risolve un problema di chiusura) delle quartiche piane razionali dotate di un tacnodo simmetrico, e si rilevano altre circostanze, riguardanti le quartiche gobbe dotate di un nodo, collegate con quella.
- 1. Recentemente è stata richiamata l'attenzione sopra alcune interessanti proprietà delle quartiche piane dotate di un biflexnodo (4). Vogliamo qui rilevare come alcuni risultati analoghi sussistano per le quartiche (piane) razionali che posseggono un tacnodo simmetrico (2). Conviene anche mettere in evidenza i loro rapporti con alcune proprietà delle quartiche gobbe dotate di un nodo (nn. 4 e 5).
- 2. Sia Γ_4 una quartica dotata di un tacnodo O e di un nodo A. Vogliamo provare che:
- a) Se esistono due rette, M_1M_2 e N_1N_2 , per A tali che, indicati con M_1 , M_2 e N_1 , N_2 i loro punti di intersezione con la Γ_4 (fuori di A), M_1 , N_1 e M_2 , N_2 risultino allineati con O, il tacnodo O è simmetrico.
- b) Quando il tacnodo O è simmetrico, detti M_1 , M_2 , N_1 , N_2 quattro punti della Γ_4 e considerate le terne M_1M_2A , N_1N_2A , M_1N_1O e M_2N_2O , se tre di esse sono costituite da punti allineati, lo stesso accade della quarta.
- (1) cfr. V. Dalla Volta, Su alcuni tipi di quartiche piane, «Rend. Acc. Lincei», Serie VIII, Vol. III, (1947). pp. 301-303, M. Dedo, Proprietà fondamentali delle quartiche piane dotate di punti doppi con tangenti inflessionali, «Periodico di Mat.», Serie IV, Vol. XXIX, (1951). pp. 11-32, e D Gallarati, Alcune questioni relative a particolari quartiche piane di genere uno, «Bollettino dell' U.M.I.», Serie III. Vol. VI, (1951), pp. 215-218.
- (2) Ricordiamo che un tacnodo si dice simmetrico o armonico quando in quel punto il rapporto delle curvature dei due rami che in esso hanno origine è uguale a 1. [Cfr. C. Segre, Su alcuni punti singolari delle curve algebriche e sulla linea parabolica di una superficie, «Rend. Acc. Lincei», Serie V, Vol VI, (1897), pp. 168-175, v. il n. 2].

Osserviamo dapprima che se il tacnodo O è simmetrico, in un generico fascio di coniche tangenti alla Γ_4 in O, le due coniche degeneri separano armonicamente quelle osculatrici alla Γ_1 nel punto O stesso (3). Allora, facendo ricorso al linguaggio infinitesimale, rappresentata con $[O^2; O_1^2; O_2, \bar{O}_2]$ la composizione del tacnodo (4) e indicato con H il punto della retta OO_1 appartenente all'intorno del primo ordine di O_1 (e quindi a quello del secondo ordine di O), e con K il punto «satellite» della coppia OO_1 (Enriques) — cioè quel punto che appare come comune agli intorni del primo ordine di O e di O_1 (Campedelli) — la condizione che il tacnodo O sia simmetrico si esprime scrivendo che il birapporto (O_2, \bar{O}_2, HK) risulta armonico.

Assoggettiamo ora la curva Γ_4 alla trasformazione quadratica, ω , avente come rete omaloidica fondamentale nel piano, π , della Γ_4 quella di punti base O, O_1 ed A. Nella ω , alle rette di π corrispondono sul piano trasformato, π' , le coniche di una rete avente certi punti base O', O'_1 (con O'_1 infinitamente vicino ad O') ed A' (distinto da O').

Per note proprietà della ω (5) — detta Γ'_2 la conica in cui si muta la Γ_4 — al punto H corrisponde il punto A', al punto K il punto O', e ad O_2 e \bar{O}_2 i punti O'_2 e $\bar{O'}_2$ in cui la retta O'A' taglia la Γ_2' . Inoltre detti M'_1 , M'_2 , N'_1 e N'_2 gli omologhi di M_1 , M_2 , N_1 e N_2 , le rette M_1 M_2 e N_1 N_2 vengono cambiate nelle rette $M'_1M'_2$ e N'_1 N'_2 , passanti per A'.

Ora dall'allineamento dei punti M_1 , N_2 , O e M_2 , N_1 , O segue quello di M'_1 , N'_2 , O' e di M'_2 , N'_1 , O', e quindi risulta $(O'_2\bar{O}'_2O'A')=-1$. Ma la corrispondenza fra l'intorno di O_1 e i punti della retta O'A' è proiettiva, e pertanto $(O_2\bar{O}_2HK)=-1$, cioè il tacnodo O è simmetrico.

- Da b) risulta $(O'_2\bar{O'}_2O'A') = -1$ e la proprietà indicata si deduce dall'esame del quadrangolo completo di vertici $M'_1M'_2N'_1N'_2$, tenendo conto che, nelle ipotesi fatte, due dei suoi punti diagonali cadono necessariamente in A' e O'.
- 3. Dalla a), particolarizzando opportunamente la posizione dei punti M_1 , M_2 , N_1 ed N_2 , si trova che O è un tacnodo simmetrico anche quando vale una delle seguenti ipotesi:
- (3) Cfr. B. Segre, Sui sistemi continui di curve piane con tacnodo. Rend. Acc. Lincei, Serie VI, Vol. IX, (1929), pp. 970-974, v il n. 3.
- (4) Cfr., p. es., L. Campedelli, Lezioni di Geometria, Vol. II, p. II, Le curve e le superficie. II ed., Padova, Cedam, 1953, p. 116.
- (5) All'intorno del primo ordine di O la ω fa corrispondere proiettivamente l'intorno del primo ordine di O'; ai punti dell'intorno del primo ordine di O_4 , i punti della retta O'A'; e all'intorno del primo ordine di A la retta $O'O'_4$.

- a_1) A è per la Γ_4 un biflexnodo (6);
- a_2) le ulteriori intersezioni della Γ_4 con le sue tangenti nel nodo A sono allineate con O;
- a_3) le due rette che passano per A (o per O) e sono tangenti altrove alla Γ_4 hanno i loro punti di contatto allineati con O (con A).

Dalla b) segue invece che, se O è un tacnodo simmetrico:

- b_1) qualora una delle due tangenti alla Γ_4 in A sia di flesso, A è un biflexezodo;
- b_2) se le tangenti alla Γ_4 nel nodo A non sono di flesso, le loro ulteriori intersezioni con la curva sono allineate con O;
- b_3) le due rette che escono da A (da O) e sono tangenti altrove alla Γ_4 hanno i loro punti di contatto allineati con O (con A).
- 4. Siano C_4 una quartica gobba (di seconda specie) armonica, cioè dotata di un nodo, P, e Q_2 una quadrica non degenere passante per essa. Se si effettua la proiezione stereografica della Q_2 da un punto, S, di una delle generatrici che escono da P, l'immagine della C_4 risulta costituita da una quartica dotata di un nodo e di un tacnodo. Allora, indicate con t_1 e t_2 , g_1 e g_2 , rispettivamente, le tangenti alla C_4 in P e le generatrici della Q_2 uscenti da P, le proprietà a) e b) si traducono nelle seguenti:
- c) Se nella Q_2 esistono quattro generatrici (due di ciascun sistema) che costituiscono le due coppie di lati opposti di un quadrilatero sphembo inscritto nella C_4 (7), le rette g_1 , g_2 , t_1 e t_2 formano un gruppo armonico.
- d) Nel fascio di quadriche avente come curva base la C_4 esiste una quadrica, Q_2 , per cui risulta $(g_1g_2t_1t_2) = -1$ (*): allora detta g una generica generatrice di tale Q_2 , si considerino le generatrici del sistema opposto che escono dai punti in cui la g si appoggia alla C_4 . Queste incontrano ulteriormente la quartica nei punti di una generatrice che appartiene allo stesso sistema di g. In altre-
- (6) Questa proprietà è stata rilevata incidentalmente da E. MARCHIONNA, nella nota Sulle quartiche piane razionali invarianti per un gruppo trirettangolo di omografie, «Periodico di Mat.», Serie IV, Vol. XXXI, (1953), pp. 229-245, v. il n. 3.
- (7) L'esistenza di un tale quadrilatero porta che la Q_2 ne contiene infiniti e che ogni generatrice generica appartiene ad uno di essi, comesegue dalla proposizione d).
- (8) Nel fascio delle quadriche che si toccano in P, la Q_2 è quella le cui generatrici g_1 e g_2 uscenti da P costituiscono la coppia comune all'involuzione che ha per rette doppie t_1 e t_2 , e a quella delle coppie di rettelungo cui le quadriche del fascio tagliano il loro piano tangente comune in P.

parole la generica generatrice di Q_2 forma, con altre tre generatrici della stessa quadrica, un quadrilatero sghembo inscritto in C_4 .

Gli stessi risultati, o loro casi limite (in cui due lati opposti del quadrilatero vengono a coincidere) (9) si ottengono partendo dalle proprietà enunciate nel n. 3. Ci limitiamo a rilevare esplicitamente che dalla a_1) segue che, se la Q_2 è la quadrica del fascio predetto che contiene una corda principale, r, della C_4 (10), cioè che passa per il centro del Bertini, le rette t_1 e t_2 separano armonicamente g_1 e g_2 .

- 5. Per la C_4 passano due coni quadrici con il vertice distinto da P. Se assumiamo uno di questi, W_2 , in luogo della Q_2 , la rappresentazione stereografica di W_2 ottenuta mediante proiezione da un punto, S, fuori della retta che unisce P al vertice, V, di W_2 fa corrispondere alla C_4 una quartica piana dotata di un nodo (che proviene da P) e di un tacnodo (che nasce in relazione alla corda VS). Dalle a) e b) seguono allora le proprietà:
- e) Chiamati T_1 e T_2 , U_1 e U_2 i punti in cui due generatrici generiche di W_2 incontrano C_4 , la retta intersezione dei piani PT_1U_1 e PT_2U_2 incontra W_2 (fuori di P) in un punto, R, che con V separa armonicamente le intersezioni di C_4 con la retta VR.
- f) Se i punti R e V separano armonicamente le intersezioni di C_4 con la retta che li unisce e T_1 e T_2 sono due punti di C_4 che appartengono ad una generatrice di W_2 , i piani PT_1R e PT_2R incontrano ulteriormente C_4 in punti allineati con V.

Per la dimostrazione basta prendere S coincidente con R (11). Analoghe traduzioni nello spazio si possono fare per gli enunciati del n. 3.

- (9) Dal fatto che le proprietà enunciate nel n. 3 siano casi limite delle a) e b) non nasce sempre come conseguenza che, effettuandone la traduzione nello spazio, si debbano necessariamente ottenere casi limite delle c) e d): infatti, come è evidente, la particolarizzazione può riflettersi sulla posizione di S. Per esempio dalla a_2) segue ancora la c).
- (40) Una corda, r, della C_4 si dice *principale* quando coincide con l'intersezione dei piani osculatori alla curva nei punti di appoggio, $M \in N$, della r. Se la Q_2 contiene la r, i lati del quadrilatero a cui si fa riferimento sono costituiti dalla r contata due volte e dalle tangenti a C_4 in M e in N.
- (11) Alle proprietà e) ed f) si perviene anche direttamente tenendo presente che V è il centro di una omologia armonica che muta in sè la quartica C_4 (cfr., p. es., E. Ciani, *Introduzione alla Geometria algebrica*, Padova, Cedam, 1931, p. 277). Basta infatti osservare che la retta PR appartiene all'asse (piano di punti uniti) di quella omologia.

Stabilite così la e) e la f), le considerazioni effettuate in questo numero dànno una nuova via per giungere alla a) e alla b).