BOLLETTINO UNIONE MATEMATICA ITALIANA

GIUSEPPE PALAMÀ

Sulla derivata erresima di classici polinomi rispetto ai parametri.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 8 (1953), n.4, p. 401–409.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1953_3_8_4_401_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Sulla derivata erresima di classici polinomi rispetto ai parametri.

Nota di Giuseppe Palamà (a Lecce)

Sunto. - È contenuto nella breve introduzione che segue.

In due Lavori (1) abbiamo dato un contributo allo studio delle derivate del primo o di ordine superiore dei polinomi di LAGUERRE, $L_n^{(\alpha)}(x)$, rispetto ad α .

Due delle formule da noi stabilite relative alla $\frac{\partial L_n^{(\alpha)}(x)}{\partial \alpha}$, sono state poi ritrovate una da F. Tricomi (²) e l'altra da L. Toscano (³). Noi qui dimostriamo, con procedimento diverso da uno seguito

altrove (4), una formula per la $\frac{\partial^2 L_n^{(2)}(x)}{\partial x^2}$ e ne stabiliamo altre analoghe, per i polinomi ultrasferici ed ipergeometrici. Talune di queste formule si ottengono agevolmente a mezzo di un teorema applicabile ad una estesa classe di funzioni.

Si danno pure due formule ricorrenti per $\frac{\partial L_n^{(\alpha)}(x)}{\partial \alpha}$, una rispetto ad α e l'altra rispetto ad n.

1. Ridimostriamo la formula relativa alla $\frac{\partial^r L_n^{(2)}(x)}{\partial x^i}$. Posto

$$\varphi_{\alpha}(x, z) = (1-z)^{-(\alpha+1)}e^{-\frac{\alpha z}{1-z}}, \quad |z| < 1,$$

- (4) Cfr. G. Palama, Sui polinomi di Legendre di Laguerre e di Hermite, «Rend. Ist. Lombardo di Sc. e let.», Vol. LXX, (1937), fasc. II; Idem, Ancora sui polinomi di Laguerre, «Boll. dell'Un. Mat. Ital.», Vol. XVII, (1938), pp. 90-93.
- (2) F. G. TRICOMI, Sulle derivate delle funzioni ipergeometriche confluenti rispetto ai parametri, «Rend. Acc. Naz. dei Lincei», Cl. Sc. Fis. Mat. e Nat., 8, 12, (1952), pp. 227-233.
- (3) L. Toscano, Sulle derivate dei polinomi di Laguerre e del tipo ultrasferico rispetto al parametro, «Boll. dell'Un. Mat. Ital.», 3, 8, (1953), fasc. II, pp. 193-195.
 - (4) Cfr. il primo dei Lavori c. in (1).

si ha

(1)
$$\frac{\partial' \varphi_{\alpha}^{(x,z)}}{\partial \alpha'} = (-1)' \varphi_{\alpha}(x,z) \log' (1-z), \quad |z| < 1;$$

ma

(2)
$$\log^{r}(1-z) = \sum_{m=0}^{\infty} \frac{(-1)^{m+r} r!}{(m+r)!} h_{m+r}, r^{2^{m+r}}, \qquad z \mid <1,$$

ove $h_{m,r}$ sono i numeri di Stirling di prima specie definiti dalle

(3)
$$h_{m, 1} = (-1)^{m-1}(m-1)!, \quad h_{m, m} = 1, \\ h_{m, r} = h_{m-1, -1} - (m-1)h_{m-1, 1}, \quad m > r;$$

e

$$\varphi_{\alpha}(x, z) = \sum_{i=0}^{\infty} z^{i} L_{i}^{(\sigma)}(x). \qquad |z| < 1;$$

pertanto dalla (1) si ha

$$\frac{\partial^r}{\partial z^r} \left[\sum_{p=0}^{\infty} z^p L_p^{(2)}(x) \right] = r ! z! \sum_{i=0}^{\infty} z^i L_i^{(2)}(x) \sum_{m=0}^{\infty} \frac{(-1)^m h_{m+r+1}}{(m+r)!} z^m, \quad |z| < 1,$$

che. moltiplicando alla CAUCHY le due serie del secondo membro, come è lecito, ed uguagliando poi i coefficienti di zⁿ dei due membri, dà

(4)
$$\frac{\partial^{\prime} L_{n}^{(\prime)}(x)}{\partial x^{\prime}} = r! \sum_{i=0}^{n-r} \frac{(-1)^{n-r-i} h_{n-i, r}}{(n-i)!} L_{i}^{(\alpha)}(x), \qquad r \leq n.$$

Ora quest'ultima, per la nota relazione

$$(-1)^{n-r}h_{n,r}=\frac{n!}{r!}s_{n,r},$$

si riduce appunto alla formula che si voleva stabilire (5). Se nella (4) poniamo r=1 si ottiene un noto risultato.

2. Per ricavare la formula ricorrente rispetto ad α di $\frac{\partial L_n^{(\alpha)}(x)}{\partial \alpha}$ basta servirsi ad es. della (6)

(5)
$$\frac{\partial L_n^{(\alpha)}(x)}{\partial \alpha} = -\sum_{i=1}^n \frac{1}{i} \cdot \frac{\partial^i L_n^{(\alpha)}(x)}{\partial x^i}.$$

(5) Cfr. l. c. in (4).

(6) Essa è sostanzialmente la formula da noi stabilita e ritrovata da L. Toscano cui si fa cenno nell'introduzione.

Difatti, la nota formula (7)

$$xL_n^{(\alpha+1)} - (x+\alpha)L_n^{(\alpha)}(x) + (\alpha+n)L_n^{(\alpha-1)}(x) = 0,$$

ricorrente rispetto ad α , la si derivi i volte rispetto ad x, la si divida per i e si sommino poi le formule che si ottengono quando si fa variare i da 1 ad n, si ha così un risultato cui, se si tien presente la (5), può darsi la forma

(6)
$$x\frac{\partial L_n^{(\alpha+1)}(x)}{\partial \alpha} - (x+\alpha)\frac{\partial L_n^{(\alpha)}(x)}{\partial \alpha} + (\alpha+n)\frac{\partial L_n^{(\alpha-1)}(x)}{\partial \alpha} + \sum_{i=1}^n (-1)^i L_{n-i}^{(\alpha+i)}(x) = 0.$$

Ora, se nella formula (8)

$$\sum_{j=0}^{n}(-1)^{j}\binom{m+j-1}{j}L_{n-j}^{(\alpha+j)}(x)=L_{n}^{(\alpha-m)}(x), m \text{ intero positivo arbitrario,}$$

si assume m=1 si ha

$$\sum_{j=1}^{n} (-1)^{j} L_{n-j}^{(\alpha+j)}(x) = L_{n}^{(\alpha-1)}(x) - L_{n}^{(\alpha)}(x),$$

cioè, per una notissima relazione

$$\sum_{j=1}^{n} (-1)^{j} L_{n-j}^{(\sigma+j)}(x) = -L_{n-1}^{(\alpha)}(x);$$

pertanto la (6) si riduce alla

$$x\frac{\partial L_n^{(\alpha+1)}(x)}{\partial \alpha} - (x+\alpha)\frac{\partial L_n^{(\alpha)}(x)}{\partial \alpha} + (\alpha+n)\frac{\partial L_n^{(\alpha-1)}(x)}{\partial \alpha} - L_{n-1}^{(\alpha)}(x) = 0.$$

In modo analogo, partendo dalla

$$(n+1)L_{n+1}^{(\alpha)}(x) - (\alpha+2n+1-x)L_{n}^{(\alpha)}(x) + (\alpha+n)L_{n-1}^{(\alpha)}(x) = 0,$$

si ricava la

$$(n+1)\frac{\partial L_{n+1}^{(\alpha)}(x)}{\partial \alpha} - (\alpha + 2n + 1 - x)\frac{\partial L_{n}^{(\alpha)}(x)}{\partial \alpha} + (\alpha + n)\frac{\partial L_{n-1}^{(\alpha)}}{\partial \alpha} - L_{n}^{(\alpha-1)}(x) = 0.$$

Valori particolari di $\frac{\partial L_n^{(lpha)}(x)}{\partial lpha}$ sono i seguenti

$$\frac{\partial L_0^{(\alpha)}(x)}{\partial \alpha} = 0, \quad \frac{\partial L_1^{(\alpha)}(x)}{\partial \alpha} = 1, \quad \frac{\partial L_2^{(\alpha)}(x)}{\partial \alpha} = -x + \alpha + \frac{3}{2}.$$

- (7) Sui polinomi di Laguerre, «Boll. dell'Un. Mat. It.», XVII, (1938), fasc. I, pp. 19-26.
 - (8) Cfr. 1, c. in (7).

3. Per stabilire la formula per la derivata erresima del polinomio ultrasferico $P_n^{(\nu)}(x)$ rispetto a ν , si tenga presente che

(7)
$$(1 - 2ax + a^2)^{-\nu} = \sum_{n=0}^{\infty} a^n P_n^{(\nu)}(x).$$

Da questa difatti derivando r volte rispetto a ν segue

$$(-1)^r(1-2ax+a^2)^{-r}\log^r(1-2ax+a^2)=\sum_{n=0}^{\infty}a^n\frac{\partial^r}{\partial^{r}}P_n^{(r)}(x),$$
 cioè, se è

$$|2ax-a^2|<1,$$

e se si utilizzano le (2) e (7)

$$\sum_{n=0}^{\infty} a^n \frac{\partial^r P_n^{(v)}(x)}{\delta v^r} =$$

$$= (-1)^r \sum_{m=0}^{\infty} a^m P_m^{(v)}(x) \sum_{q=0}^{\infty} \frac{(-1)^{q+r} r!}{(q+r)!} h_{q+r, r} (2ax - a^2)^{q+r},$$

ossia

$$\sum_{n=0}^{\infty} a^n \frac{\partial^r P_n^{(\nu)}(x)}{\partial \nu^r} =$$

$$\sum_{n=0}^{\infty} a^n \frac{\partial^r P_n^{(\nu)}(x)}{\partial \nu^r} =$$

Ora, se moltiplichiamo le serie del secondo membro di quest'ultima alla CAUCHY, come anche questa volta è possibile. ed uguagliamo poi i coefficienti di a^n , otteniamo

$$\frac{\partial^{r} P_{n}^{(v)}(x)}{\partial^{v}} = (-1)^{r} r ! \sum_{p=1}^{n} \sum_{k=0}^{[p/2]} \frac{(-1)^{p} h_{p-k, r}}{k! (p-2k)!} (2x)^{p-2k} P_{n-p}^{(v)}(x),$$

che, essendo $h_{m,n} = 0$, per m < n, può scriversi

(8)
$$\frac{\partial^r P_n^{(v)}(x)}{\partial v^r} = (-1)^r r! \sum_{n=r}^n \sum_{k=0}^{\lfloor p/2 \rfloor} \frac{(-1)^n h_{n-k}}{k! (p-2k)!} (2x)^{p-2k} P_{n-p}^{(v)}(x),$$

cui si voleva pervenire.

Si noti che il limite superiore [p/2] della seconda Σ della (8) va sostituito con p-r quando è [p/2] > p-r, cosa questa che non si verifica mai quando è r=1.

Se nella (8) si fa r=1 e si tien presente la prima delle (3) si ha

(9)
$$\frac{\partial P_n^{(\nu)}(x)}{\partial \nu} = \sum_{m=1}^n \sum_{k=0}^{[m/2]} \frac{(-1)^k \binom{m-k}{k}}{m-k} (2x)^{m-2k} P_{n-m}^{(\nu)}(x).$$

Ma è (°)

(10)
$$V_{m}(x, -q) = m \cdot \sum_{k=0}^{\lfloor m/2 \rfloor} \frac{q^{k} \binom{m-k}{k}}{m-k} x^{m-2k},$$

ove $V_m(p, q)$ è una delle due funzioni numeriche del 2º ordine di Lucas che è soluzione della formula ricorrente (10)

$$V_m(p, q) - p V_{m-1}(p, q) + q = 0,$$

con i valori iniziali $V_0 = 2$, $V_1 = p$; quindi se nella (10) mutiamo x in 2x e facciamo q = -1, abbiamo

$$V_{m}(2x, 1) = m \sum_{k=0}^{\lfloor m/2 \rfloor} \frac{(-1)^{k} \binom{m-k}{k}}{m-k} (2x)^{m-2k}$$

che portato nella (9) ci dà

(11)
$$\frac{\partial P_n^{(\nu)}(x)}{\partial \nu} = \sum_{m=1}^n \frac{1}{m} V_m(\dot{z}x, 1) P_{n-m}^{(\nu)}(x).$$

D'altra parte si sa che (11)

$$V_{m}(2\cos\theta, 1) = 2\cos m\theta,$$

quindi la (11), ponendovi $x = \cos \theta$, può scriversi infine

$$\frac{\partial P_{n}^{(\nu)}(\cos\theta)}{\partial^{\nu}} = 2\sum_{m=1}^{n} \frac{1}{m} \cos m\theta P_{n-m}^{(\nu)}(\cos\theta).$$

4. Dimostriamo ora il seguente teorema Se è

(12)
$$\Phi(x, \alpha, \beta, ..., n) = f(x, \alpha, \beta, ..., n) \varphi_x^{(n)}(x, \alpha, \beta, ..., n),$$

ove Φ , f e φ sono delle funzioni che, per x, α , β ..., variabili in opportuni intervalli, siano derivabili quante volte occorrano rispetto a ciascuna delle x, α , β ,...; $\varphi_x^{(n)}$ sta per $\frac{\partial^n \varphi}{\partial x^n}$ (analoghi simboli sono

- (9) E. Lucas, Théorie des nombres, t. I, Paris, (1891), p. 314.
- (10) Cfr. I. c. in (9), pp. 308-331. Le due funzioni numeriche del secondo ordine sono state poi studiate estesamente da G. Candido, Scritti matematici (a cura di Enea Bortolotti ed E. Nannei), Firenze, (1948), pp. 467-577.
 - (11) Cfr. l. c. in (9), p. 319.

usati in seguito); e se ψ è una funzione di x, α , β ,..., n, per cui si ha

(13)
$$(f'_{\alpha} = - \psi(x, \alpha, \beta, ..., n)f, (\varphi'_{\alpha} = \psi(x, \alpha, \beta, ..., n)\varphi,$$

allora è

(14)
$$\Phi'_{\alpha}(x, \alpha, \beta, \dots, n) = f \sum_{i=1}^{n} {n \choose i} \psi_{\alpha}^{(i)} \varphi_{\alpha}^{(n-i)}.$$

Difatti dalla (12) si ha per la (13)

$$\Phi'_{\alpha} = -\psi f \varphi_{x}^{(n)} + f \frac{\partial^{n}}{\partial x^{n}} (\varphi \psi),$$

da cui, applicando la formula di Leibniz relativa alla derivata ennesima di un prodotto, segue subito la (14).

Ora, se dalla (12) può ricavarsi

$$\varphi_x^{(n-i)}(x, \alpha, \beta, \ldots, n),$$

allora nella (14) si può eliminare tale $\varphi_x^{(n-i)}$. Perchè ciò sia possibile occorre che α , β ,... siano contenute in φ in delle espressioni in cui o manca la n, oppure, in caso contrario, che consentano, una volta mutato n in n-i, di variare α , β ,... in modo che quelle espressioni non cambino; così se ad esempio esse sono dei tipi

(15)
$$a_1 \alpha + b_1 n + c_1$$
, $a_2 \beta + b_2 n + c_2$, ..., (a_1, b_1, c_1) costanti),

dopo aver cambiato n in n-i, basta mutarvi α , β ,... rispettivamente in

(16)
$$\alpha + \frac{b_1}{a_1}i, \qquad \beta + \frac{b_2}{a_2}i, \ldots,$$

affinchè le stesse (15) non varino.

In quest'ultima ipotesi dalla (12) si ha

$$\varphi_x^{(n-i)}(x, \alpha, \beta, ..., n) = f_1^{-1}\Phi_1$$

ove con f_1 e Φ_1 si sono indicate le funzioni che si hanno rispettivamente dalle f e Φ quando in esse si mutano α , β ,... ed n rispettivamente nelle (16) ed in n-i, e pertanto dalla (14) segue allora

(17)
$$\Phi'_{\alpha} = f_{\alpha} \sum_{i} \binom{n}{i} f_{i}^{-1} \Phi_{i} \psi_{\alpha}^{(i)}.$$

Infine notiamo che le (13), dividendole membro a membro ed integrando danno

$$f = 0 \psi^{-1}$$

in cui θ è una funzione dipendente soltanto da x, β , ..., n.

5. Applicazioni.

Per le funzioni che qui si considerano le dette condizioni di derivabilità sono verificate.

a) Il caso dei polinomi di Laguerre.

Si ha

(18)
$$L_n^{(\alpha)}(x) = \frac{1}{n!} x^{-\alpha} e^x \frac{\hat{\sigma}^n}{\partial x^n} (x^{\alpha+n} e^{-r}),$$

ed è quindi

$$\Phi = L_n^{(a)}(x), \ f = \frac{1}{n!} x^{-\alpha} e^x, \quad \varphi = x^{\alpha + n} e^{-x},$$

e le (13) diventano

$$f'_{\alpha} = -f \log x$$
, $\varphi'_{\alpha} = \varphi \log x$.

Pertanto è

$$\psi = \log x, \quad \psi_x^{(i)} = (-1)^{i-1}(i-1)! \, x^{-i};$$

ma, poichè cambiando nella (18) n in n-i, α in $\alpha+i$, la φ non varia si ha

$$f_1 = \frac{1}{(n-i)!} x^{-\alpha-i} e^x, \quad \Phi_1 = L_{n-i}^{(\alpha+i)}(x).$$

Portando tali valori di $\psi_x^{(i)}$, f_1 , Φ_1 nella (17) si ha la nota formula (12)

$$\frac{\partial}{\partial x} L_n^{(\alpha)}(x) = \sum_{i=1}^n \frac{(-1)^{i-1}}{i} L_{n-i}^{(\alpha+i)}(x).$$

b) Il caso dei Polinomi ultrasferici. Dalla

(19)
$$\Phi(x, \alpha, n) = B_n(\alpha) P_n^{(\alpha/2)}(x) = \frac{(1-x^2)^{\frac{1-\alpha}{2}}}{(-2)^n n!} \cdot \frac{\partial^n}{\partial x^n} (1-x^2)^{n+\frac{\alpha-1}{2}},$$

ove

$$B_n(\sigma) = \frac{\left(\frac{\alpha+1}{2}, n\right)}{(\alpha, n)}.$$

si ha

$$t = \frac{(1-x^2)^{\frac{1-\sigma}{2}}}{(-2)^n n!}, \quad \varphi = (1-x^2)^{n+\frac{\alpha-1}{2}},$$

(12) È appunto questa la formula di cui si parla nella nota (6).

che soddisfano alle (13) con

$$\psi(x) = \frac{1}{2} \log (1 - x^2).$$

Inoltre, se nella (19) si cambia n in n-i, α in $\alpha+2i$, la φ non muta perchè si ha

$$\Phi(x,\alpha+2i, n-i) = B_{n-i}(\alpha+2i)P_{n-i}^{\left(i+\frac{\alpha}{2}\right)}(x) = \frac{(1-x^2)^{\frac{1-\alpha}{2}-i}}{(-2)^{n-i}(n-i)!} \cdot \frac{\partial^{n-i}}{\partial x^{n-i}}(1-x^2)^{n+\frac{\alpha-1}{2}},$$

e quindi è

$$f_1 = \frac{(1-x^2)^{\frac{1-\alpha}{2}-i}}{(-2)^{n-i}(n-i)!}, \quad \Phi_1 = B_{n-i}(\alpha+2i)P_{n-i}^{(i+\frac{\alpha}{2})}(x);$$

ma, essendo inoltre

$$\frac{d}{dx}\log(1-x^2) = \frac{d}{dx}\left[\log(1-x) + \log(1+x)\right] = -(1-x)^{-1} + (1+x)^{-1},$$

e perciò

$$\frac{d^{i}}{dx^{i}}\log(1-x^{i}) = \frac{(i-1)!}{(1-x^{i})!}[(-1)^{i-1}(1-x)^{i} - (1+x)^{i}],$$

dalla (17) si ha la nota formula (13)

$$\frac{\partial}{\partial \alpha} \left[B_n(\alpha) P_n^{\alpha/2}(x) \right] = \sum_{i=1}^n \frac{1}{2i} A_i(x) B_{n-i}(\alpha + 2i) P_{n-i}^{\left(i + \frac{\alpha}{2}\right)}(x),$$

in cui

$$A_i(x) = (-1)^{i-1} \left(\frac{1+x}{2}\right)^i - \left(\frac{1-x}{2}\right)^i.$$

Il caso dei polinomi ipergeometrici.

Essi sono definiti dalla

$$P_n^{\alpha,\beta}(x) = \frac{(-1)^n}{2^n n!} (1-x)^{-\alpha} (1+x)^{-\beta} \frac{\partial^n}{\partial x^n} [(1-x)^{\alpha+n} (1+x)^{\beta+n}].$$

Si ha ora

$$\Phi(x, \alpha, \beta, n) = P_n^{\alpha, \beta}(x), f = \frac{(-1)^n}{2^n n!} (1-x)^{-\alpha} (1+x)^{-\beta},$$

$$\varphi = (1-x)^{\alpha+n} (1+x)^{\beta+n},$$

(13) Cfr. l. c. in (3).

e le (13) sono soddisfatte con

$$\psi = \log (1 - x)$$
.

Si ha inoltre

$$f_1 = \frac{(-1)^{n-i}}{2^{n-i}(n-i)!}(1-x)^{-\alpha-i}(1+x)^{-\beta-i}, \ \Phi_1 = P_{n-i}^{\alpha+i}, \ \beta+i}(x), \ \psi_x^{(i)} = -\frac{(i-1)!}{(1-x)!};$$

quindi dalla (17) segue

$$\frac{\partial}{\partial \alpha} P_n^{\alpha, \beta}(x) = \sum_{i=1}^n \frac{(-1)^{i+1}}{2^i i} (1+x)^i P_{n-i}^{\alpha+i, \beta+i}(x).$$

Analogamente si ha poi

$$\frac{\partial}{\partial \beta} P_n^{\alpha, \beta}(x) = \sum_{i=1}^n \frac{1}{2^{i}i} (x-1)^i P_{n-i}^{\alpha+i, \beta+i}(x)$$

e pertanto

$$\frac{\partial^2}{\partial \alpha \partial \beta} P_n^{\alpha, \beta}(x) = \sum_{i=1}^{n-1} \sum_{j=1}^{n-i} \frac{(-1)^{i+1}}{2^{i+j}ij} (x+1)^i (x-1)^j P_{n-i-j}^{\alpha+i+j, \beta+i+j}(x).$$

d) Il caso dei polinomi di Jacobi.

Il teorema può anche applicarsi ai polinomi detti da taluni di Jacobi definiti dalla

$$(\gamma,\ n)F_n(\beta,\ \gamma,\ x)=x^{1-\gamma}(1-x)\gamma^{-\beta+n}\cdot\frac{\partial^n}{\partial x^n}\,x\gamma^{+n-1}(1-x)^{\beta-\gamma}\,,$$
 ove

$$F_n(\beta, \gamma, x) = F(-n, \beta, \gamma, x),$$

essendo F la funzione ipergeometrica di Gauss.