BOLLETTINO UNIONE MATEMATICA ITALIANA

Luigi Gatteschi

Una proprietà degli estremi relativi dei polinomi di Jacobi.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 8 (1953), n.4, p. 398–400.

Zanichelli

 $<\!\!\mathtt{http://www.bdim.eu/item?id=BUMI_1953_3_8_4_398_0}\!\!>$

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Una proprietà degli estremi relativi dei polinomi di Jacobi.

Nota di Luigi Gatteschi (a Bari)

- Sunto. Si prova che, detta φ_r , n l'ascissa dell'r-esimo estremo relativo dei polinomi di Jacobi $\dot{P}_n^{(\alpha,\beta)}(\cos \beta)$, risulta, per un fissato r, lim $(\text{sen }\varphi_r,n/2)^{\alpha}(\cos \varphi_r,n/2)^{\beta}P_n^{(\alpha,\beta)}(\cos \varphi_r,n)=J_{\alpha}(j_r,\alpha+1)$ dove $j_r,\alpha+1$ è $n \to \infty$ l'r-esimo zero della funzione di Bessel di prima specie $J_{\alpha+1}(x)$.
- 1. G. VILLARI (1) e F. G. TRICOMI (2) hanno studiato i limiti per $n \to \infty$ degli estremi relativi dell' n-esimo polinomio di LEGENDRE $P_n(x)$.

Più precisamente G. VILLARI ha provato direttamente che, dette $y_{1,n}$, $y_{2,n}$, ..., $y_{n-1,n}$ le ascisse degli estremi relativi di $P_n(x)$ disposte in ordine decrescente, e posto

$$|P_n(y_{r,n})| = \mu_{r,n}$$

si ha, fissato r,

$$\lim_{n\to\infty}\mu_{r,n}=h,>0.$$

In particulare è $h_1 > 0$, 39983, $h_2 > 0$, 29408.

F. G. TRICOMI, sfruttando parzialmente risultati contenuti in un suo precedente lavoro, ha inoltre dimostrato che è, fissato r,

lim
$$P_n(y_{r,n}) = J_0(j_{r,1}),$$

dove $j_{r,1}$ indica l'r-esimo zero positivo della funzione idi Bessel di prima specie $J_1(x)$.

- (42) Le condizioni analitiche a cui si è condotti dall'enunciato precedente o dal VI, mostrano che la corrispondenza Σ ed anche le ∞^s di S_{n-s} possono talvolta non essere arbitrarie (in uno oppure anche in entrambi gli spazi S_n , \overline{S}_n) ma sottoposte a condizioni che gli enunciati predetti permettono in ogni caso di scrivere. Nel n. 5 le abbiamo interpretate geometricamente per s=2, n=3.
- (4) G. VILLARI, Sugli estremi relativi dei polinomi di Legendre, « Boll. Un. Mat. Ital. », (3), 7, (1952), pp. 421-423.
- (2) F. G. TRICOMI, Determinazione dei limiti per $n \to \infty$ degli estremi relativi dell'n-esimo polinomio di Legendre, ibidem, (3), 8, (1953), pp. 107-109.

Ultimamente M. T. Vacca (3) ha trattato un'analoga questione per polinomi di Jacobi $P_n^{\alpha,\beta}(x)$ ed ha provato che, fissato r, risulta

(1)
$$\lim_{n \to \infty} n^{-\alpha} P_n^{(\alpha,\beta)}(y_{r,n}) = \left(\frac{j_{r,\alpha+1}}{2}\right)^{-\alpha} J_{\alpha}(j_{r,\alpha+1}),$$

dove $y_{r,n}$ è l'ascissa dell'r-esimo estremo relativo di $P_n^{(\alpha,\beta)}(x)$ e $j_{r,\alpha+1}$ l'r-esimo zero di $J_{\alpha+1}(x)$.

In questa Nota, partendo da formule note, proveremo rapidamente che, indicando con $\mu_{r,n}^{(\alpha,\beta)}$. $r=1,\ 2,...,\ n-1,\ i$ valori della funzione

$$\left(\sin\frac{\pi}{2}\right)^{\alpha}\left(\cos\frac{\pi}{2}\right)^{\beta}P_{n}^{(\alpha,\beta)}(\cos\pi), \qquad \qquad \alpha > -1.$$

negli estremi di $P_n^{(\alpha,\beta)}(x)$, $(x=\cos z)$, si ha, fissato, r,

(2)
$$\lim_{n \to \infty} \mu_{r,n}^{(\alpha,\beta)} = J_a(j_{r,\alpha+1}).$$

2. È noto il seguente teorema (4):

TEOREMA. – Siano $x_{1,n} > x_{2,n} > ...$ gli zeri di $P_n^{(\alpha,\beta)}(x)$ in (-1, 1) disposti in ordine decrescente (α e β reali ma non necessariamente maggiori di -1).

Posto $x_{r,\,n} = \cos \mathfrak{I}_{r,\,n}, \ 0 < \mathfrak{I}_{r,\,n} < \pi, \ allora \ per \ un \ fissato \ r.$ si ha

(3)
$$\lim_{n \to \infty} n \Im_{r, n} = j_{r, \alpha}$$

dove $j_{r,\alpha}$ è l'r-esimo zero positivo di $J_{\alpha}(x)$.

Se x > -1 e β reale arbitrario sussiste inoltre la seguente formula asintotica di HILB-SZEGÖ (5)

(4)
$$\left(\operatorname{sen} \frac{\mathfrak{I}}{2} \right)^{\alpha} \left(\operatorname{cos} \frac{\mathfrak{I}}{2} \right)^{\beta} P_{n}^{(\alpha,\beta)} (\operatorname{cos} \mathfrak{I}) =$$

$$= \frac{\Gamma(n+\alpha+1)}{n! [n+(\alpha+\beta+1)/2]^{2}} \left(\frac{\mathfrak{I}}{\operatorname{sen} \mathfrak{I}} \right)^{2} J_{\alpha} \left((n+(\alpha+\beta+1)/2) \mathfrak{I} \right) + \mathfrak{I}^{\frac{1}{2}} O(n^{-\frac{3}{2}}).$$

Supposto dunque $\alpha > -1$ e β reale arbitrario si valutino le ascisse $y_1, n > y_2, n > \dots$ degli estremi relativi di $P_n^{(\alpha, \beta)}(x)$ in (-1, 1).

- (3) M. T. Vacca, Determinazione asintotica per $n \to \infty$ degli estremi relativi dell'n-esimo polinomio di Jacobi, «Boll. Un. Mat. Ital.», (3), 8, (1953), pp. 277-280
- (4) G. Szegö, Orthogonal Polynomials, «Amer. Math. Soc. Coll. Publ.», XXIII, New York, (1939), p. 186.
 - (5) loc. cit. (4), p. 191.

queste per la nota relazione

$$\frac{d}{dx} |P_{n}^{(\alpha,\beta)}(x)| = \frac{1}{2} (n + \alpha + \beta + 1) P_{n-1}^{(\alpha+1,\beta+1)}(x).$$

sono gli zeri di $P_{n-1}^{(\alpha+1, \beta+1)}(x)$, e posto

$$y_{r,n}=\cos\varphi_{r,n}, \qquad 0<\varphi_{r,n}<\pi,$$

abbiamo per la (3)

(5)
$$\lim_{n \to \infty} \left(n + \frac{\alpha + \beta + 1}{2} \right) \varphi_{r,n} = j_{r,\alpha+1}.$$

D'altra parte per la (4) è

$$\left(\operatorname{sen} \frac{\varphi_{r,n}}{2} \right)^{\alpha} \left(\operatorname{cos} \frac{\varphi_{r,n}}{2} \right)^{\beta} P_{n}^{(\alpha,\beta)} (\operatorname{cos} \varphi_{r,n}) =$$

$$= \frac{\Gamma(n+\alpha+1)}{n! [n+(\alpha+\beta+1)/2]^{\alpha}} \left(\frac{\varphi_{r,n}}{\operatorname{sen} \varphi_{r,n}} \right)^{\frac{1}{2}} J_{\alpha} | (n+(\alpha+\beta+1)/2) \varphi_{r,n} | +$$

$$+ \varphi_{r,n}^{\frac{1}{2}} \mathcal{O}(n^{-\frac{3}{2}}),$$

e tenuto conto della (5) e che

$$\lim_{n\to\infty}\frac{\Gamma(n+\alpha+1)}{n![n+(\alpha+\beta+1)/2]^{\alpha}}\left(\frac{\varphi_{r,n}}{\sec\varphi_{r,n}}\right)^{\frac{1}{2}}=1,$$

ne segue

(6)
$$\lim_{n \to \infty} \left(\sin \frac{\varphi_{r,n}}{2} \right)^{\alpha} \left(\cos \frac{\varphi_{r,n}}{2} \right)^{\beta} P_n^{(\alpha,\beta)}(\cos \varphi_{r,n}) = J_{\alpha}(j_{r,\alpha+1}),$$

e questo prova la (2).

Se osserviamo ora che è

$$\lim_{n\to\infty}\cos\frac{\varphi_{r,n}}{2}=1,$$

e per la (5)

$$\lim_{n\to\infty} n^{\alpha} \left(\sin \frac{\psi_{r,n}}{2} \right)^{\alpha} = \frac{1}{2^{\alpha}} \lim_{n\to\infty} n^{\alpha} \varphi_{r,n}^{\alpha} = \frac{1}{2^{\alpha}} (j_{r,\alpha+1})^{\alpha},$$

si ha dalla (6)

$$\lim_{n \to \infty} n^{-\alpha} P_n^{(\alpha, \beta)}(\cos \varphi_{r, n}) = \left(\frac{j_{r, \alpha+1}}{2}\right)^{-\alpha} J_{\alpha}(j_{r, \alpha+1}),$$

che è il risultato stabilito da M. T. VACCA.