BOLLETTINO UNIONE MATEMATICA ITALIANA

Mauro Picone

Su un criterio del Dini di convergenza uniforme.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 7 (1952), n.2, p. 106–108.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1952_3_7_2_106_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Su un criterio del Dini di convergenza uniforme.

Nota di Mauro Picone (a Roma).

Sunto. Si dà una condizione necessaria e sufficiente per la convergenza uniforme di una successione di funzioni definite in un insieme elementare di uno spazio di Hausdorff, aventi ciascuna coinsieme in uno spazio metrico.

È ben noto, ed utilmente applicato in Analisi, il seguente criterio di convergenza uniforme del Dini:

Se una successione $|f_n(x)|$ di funzioni reali della variabile reale x, continue in un intervallo (a, b), chiuso e limitato, converge ivi, non decrescendo, verso una funzione continua, la convergenza è uniforme nell'intervallo.

Sia $\{f_n(x)\}\$ una successione di arbitrarie funzioni reali della variabile reale x, definita nell'arbitrario intervallo (a, b) e sia f(x) un'altra tale funzione. Posto

(1)
$$p_n(x) = |f(x) - f_n(x)| + \frac{1}{n},$$

supponiamo che si abbia

$$\lim_{n\to\infty}f_n(x)=f(x),$$

uniformemente in (a, b). Si avrà pure, allo stesso modo,

$$\lim_{n\to\infty} p_n(x) = 0,$$

e viceversa, e, per ogni successione crescente $n_1, n_2, ..., n_k, ...,$ di indici,

$$\lim_{k\to\infty} p_{n_k}(x) = 0,$$

del pari uniformemente in (a, b). Sia v_1 il più basso fra i numeri n_k per cui si abbia, in (a, b),

$$p_{-1}(x) < \frac{1}{n_1},$$

 v_* il più basso fra i numeri n_* per cui si abbia

$$p_{\nu_2}(x) < \frac{1}{\nu_1},$$

ecc., si ottiene, così, la successione $\{p_{\nu_k}(x)\}$, subordinata alla $\{p_{n_k}(x)\}$, decrescente in ogni punto x di (a, b). Si ha dunque il risultato:

I. Assegnata, in un arbitrario intervallo (a, b), una successione $\{f_n(x)\mid di \text{ arbitrarie funzioni reali della variabile reale } x, \text{ condizione necessaria affinchè essa converga, uniformemente in (a, b), verso una funzione <math>f(x)$, è che, introdotte le funzioni $p_n(x)$, definite dalla (1), ad ogni successione subordinata alla $\{p_n(x)\}$, ne sia subordinata una decrescente in ogni punto di (a, b).

Ebbene si dimostra immediatamente che se l'intervallo (a, b) è chiuso e limitato e le funzioni $f_n(x)$ e f(x) vi sono continue, supposto che la successione $\{f_n(x)\}$ converga in (a, b) verso la f(x) la sopraddetta condizione necessaria è anche sufficiente per l'uniformità della convergenza. La dimostrazione può farsi, supponendo, più in generale, che x indichi un elemento di un arbitrario spazio di Hausdorff e ogni funzione $f_n(x)$ della successione $\{f_n(x)\}$ sia definita in un insieme C, chiuso e compatto — cioè, come dirò, elementare (1) — di detto spazio e faccia corrispondere a ciascuno elemento di C un elemento di uno spazio metrico del pari arbitrario, pervenendo al seguente teorema:

II. Condizione necessaria affinchè la successione $\{f_n(x)\}$ converga uniformemente in un insieme, verso una funzione f(x), è che, ad ogni successione subordinata alla $\{p_n(x)\}$, ne sia subordinata una decrescente in ogni elemento dell'insieme. Se la successione $\{f_n(x)\}$ converge nell'insieme elementare C, verso la funzione f(x), riuscendo ciascuna funzione $\{f_n(x)-f(x)\}$ supersemicontinua in C $({}^z)$, la detta condizione è anche sufficiente per l'uniformità, in C, della convergenza.

Se, supposta soddisfatta tale condizione, la convergenza della successione $\{p_n(x)\}$ non fosse uniforme in C, esisterebbero un numero positivo ε ed una successione crescente di indici $n_1, n_2, ..., n_k, ...,$ tale che l'insieme

$$C_{n_k} = C[p_{n_k}(x) \geq \varepsilon].$$

- (4) Seguendo una locuzione da me proposta nel mio scritto: Due conferenze sui fondamenti del "Calcolo delle variazioni", «Giornale di Matematiche di Battaglini», Vol. 80 della serie IV, 1950-51.
- (2) Dico (cfr. loc. cit. (1), p. 52) supersemicontinua (infersemicontinua) invece di semicontinua superiormente (inferiormente).

108 MAURO PICONE

non sia vuoto per qualsivoglia k. Per la supposta supersemicontinuità delle $p_n(x)$ in C, l'insieme C_{n_k} risulterebbe pur esso elementare. Sia $\{p_{\nu_k}(x)\}$ una successione decrescente in C, subordinata alla $\{p_{n_k}(x)\}$. L'insieme $C_{\nu_{k+1}}$ sarebbe contenuto nell'insieme C_{ν_k} , per qualsivoglia k, e pertanto, data l'elementarità di C e dei C_{ν_k} , esisterebbe un elemento x_0 comune a questi insiemi, nel quale risulterebbe

$$p_{\nu_k}(x_0) \geq \varepsilon$$
,

per qualsivoglia k, ciò che, per la supposta convergenza in C della successione $\{f_n(x)\}$ verso la f(x), è assurdo.