BOLLETTINO UNIONE MATEMATICA ITALIANA

Jaurès Cecconi

Un esempio nella teoria delle trasformazioni piane.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 6 (1951), n.1, p. 18–21.

Zanichelli

 $<\!\!\mathtt{http://www.bdim.eu/item?id=BUMI_1951_3_6_1_18_0}\!\!>$

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Un esempio nella teoria delle trasformazioni piane.

Nota di Jaurès Cecconi (a Pisa).

Sunto. - Si dà un esempio di due trasformazioni piane continue a variazione limitata, aventi lo stesso contorno, per le quali le funzioni caratteristiche di molteplicità relativa differiscono in un insieme di misura piana positiva.

Sia A il quadrato unitario $0 \le \frac{u}{v} \le 1$ del piano uv e sia

$$T: \quad x = x(u, v), \qquad y = y(u, v) \qquad (u, v) \in A$$

una trasformazione piana ivi definita.

Se T è a variazione limitata (B. V.) può considerarsi [L. CE-SARI [1]] la «funzione caratteristica di molteplicità relativa» n(x, y; T) della trasformazione T, la quale ha una naturale applicazione nella formula di trasformazione degli integrali doppi [1].

Una analoga funzione di molteplicità relativa, v(x, y; T), è stata introdotta, allo stesso scopo, da T. Rado [3], e le funzioni n(x, y; T), v(x, y; T); come ho fatto vedere in un precedente lavoro [2]; coincidono quasi ovunque nel piano xy nella ipotesi che T sia assolutamente continua (A. C.).

La funzione n(x, y; T) gode, fra l'altro, della proprietà espressa dal seguente

TEOREMA [L. CESARI [1]]. — Se $T \in B$. V. in A e se $C \in P$ immagine del contorno di A secondo T allora per quasi ogni puntodel piano xy che non appartenga a C si ha

$$n(x, y; T) = 0(x, y; C)$$

essendo 0(x, y; C) l'indice topologico del punto (x, y) rispetto a C. Da questo teorema segue in particolare che se C occupa nel piano xy un insieme di misura piana nulla allora è quasi ovunq uenel piano xy,

$$n(x, y; T) = 0(x, y; 0).$$

Ne segue anche che se C è di misura piana nulla e se T_1 e T_2 sono due trasformazioni piane continue aventi C per contorno è quasi ovunque nel piano xy

$$n(x, y; T_1) = n(x, y; T_2).$$

Nessuna informazione si ha invece, per quanto è a mia conoscenza, sul caso in cui C occupi un insieme di misura piana positiva.

Mi propongo in questa nota di dare un esempio di due trasformazioni piane T_1 e T_2 aventi lo stesso contorno C per le quali è $n(x, y; T_1) \neq n(x, y; T_2)$ in un insieme di misura positiva.

Sia A il quadrato, sopra considerato, del piano uv e siano A_1 , A_2 , A_3 , A_4 i quattro triangoli di vertici rispettivi [(0, 0), (1, 0), (1/2, 1/2)]; [(1, 0), (1, 1), (1/2, 1/2)]; [(1, 1), (0, 1), (1/2, 1/2)]; [(0, 1), (0, 0), (1/2, 1/2)]; in cui A è diviso dalle diagonali.

Considero la seguente linea C immagine del contorno di A.

L'immagine del lato $0 \le u \le 1$, v = 0 è il segmento x = u, y = 0, $0 \le u \le 1$.

L'immagine del lato u=1, $0 \le v \le 1$ è il segmento x=1, y=v, $0 \le v \le 1$.

L'immagine del lato $0 \le u \le 1$, v = 1 è una curva continua

$$\Gamma: x = \varphi(u), \quad y = \psi(u) \quad 0 \le u \le 1$$

semplice aperta che occupa un insieme di misura positiva, tale che sia $[\varphi(1), \psi(1)] \equiv (1, 1), [\varphi(0), \psi(0)] \equiv (3/4, 1/4)$ e tale inoltre che i punti di Γ appartengano ad un rombo di vertici opposti (1, 1), (3/4, 1/4) ed interno al triangolo di vertici (1, 1), (1/2, 1/2), (7/8, 1/8) del piano xy.

L'immagine del lato $u=0,\ 0\leq v\leq 1$ è il segmento $x=\frac{3}{4}v$, $y=\frac{1}{4}v,\ 0\leq v\leq 1$.

Definisco T_1 nel seguente modo.

Se $(u, v) \in A_1$ pongo T_1 : x = u, y = v.

Se $(u, v) \in A_2$ pongo $T_1: x = u, y = v$.

Per definire T in A_3 considero intanto la trasformazione lineare del segmento di estremi (1/2, 1/2), (0, 1) del piano uv nel segmento di estremi (1/2, 1/2), (3/4, 1/4) del piano xy, e la trasformazione lineare del segmento di estremi (1/2, 1/2). (1, 1) del piano uv nel segmento di estremi (1/2, 1/12), (1, 1) del piano xy.

In tal modo mediante, anche, la trasformazione sopra definita del segmento di estremi (0, 1), (1, 1) del piano uv nella linea Γ del piano xy, risulta definita una trasformazione biunivoca e bicontinua del contorno del triangolo A_3 del piano uv nella linea semplice chiusa, sia essa C_1 , formata da Γ e dai segmenti di estremi rispettivamente (1, 1), (1,2, 1/2); (1/2, 1/2), (3/4, 1/4).

In virtù di un noto teorema di Schoenflies [6] ne discende allora la possibilità di prolungare questa corrispondenza biunivoca e bicontinua fino ad un omeomorfismo degli interni di A_3 e di C_1 che si riduce al dato fra il contorno di A_3 e C_1 .

Sia

$$T_1: x = x_1(u, v), \quad y = y_1(u, v)$$
 $(u, v) \in A_3$

questa trasformazione.

Definisco infine T_1 in A_4 in modo che essa sia lineare e faccia corrispondere ai punti (0, 0), (0, 1), (1/2, 1/2) del piano uv i punti (0, 0), (3/4, 1/4), (1/2, 1/2) del piano xy rispettivamente.

Per il modo come è definita T_1 risulta continua in A.

Essa risulta altresì a variazione limitata poichè la funzione caratteristica di molteplicità assoluta $k(x, y; T_1)$ risulta sommabile nel quadrato $0 \le \frac{x}{n} \le 1$ del piano xy.

Ciò si vede immediatamente ricordando che, secondo T. Rado [3], $h(x, y; T_1)$ da il numero degli e.m.m.c. [3] di (x, y) secondo T_1 in A.

Tale numero è minore od uguale al numero degli m.m.c. [3] di (x, y) secondo T_1 in A ed è perciò ≤ 2 .

È inoltre in virtù di un teorema di P. V. REICHELDERFER [5] e di un mio risultato [2]

$$n(x, y; T_1) = k^+(x, y; T_1) - k^-(x, y; T_1)$$

essendo $k^+(x, y; T_1)$ $[k^-(x, y; T_1)]$ il numero degli e. m. m. c. γ di (x, y) secondo T_1 in A ognuno dei quali ha la proprietà che in ogni insieme aperto O contenente γ esiste una regione di Jordan R di connessione finita tale che $\gamma \subset R^0$, $R \subset O \cdot A$, $O(x, y; R^0) > 0$ $[O(x, y; R^0) < 0]$.

Ne viene perciò che in ogni punto (x, y) $\in \Gamma$ si ha

$$n(x, y; T_1) = 1.$$

Passo ora a definire la trasformazione T_2 .

Se $(u, v) \in A_1$

$$T_2$$
: $x = x_2(u, v)$, $y = y_2(u, v)$ $(u, v) \in A_1$

è la trasformazione lineare che fa corrispondere ai punti (0, 0), (1, 0), (1/2, 1/2) del piano uv rispettivamente i punti (0, 0), (1, 0), (7/8, 1/8) del piano xy.

Se $(u, v) \in A_2$

$$T_2: x = x_2(u, v), \quad y = y_2(u, v) \quad (u, v) \in A_2$$

è la trasformazione lineare che fa corrispondere ai punti (1, 0), (1, 1), (1/2, 1/2) del piano uv i punti (1, 0), (1, 1), (7/8, 1/8) del piano xy.

Per definire T_2 quando $(u, v) \in A_3$ considero intanto la trasformazione lineare del segmento di estremi (1, 1); (1/2, 1/2) del piano uv nel segmento di estremi (1, 1), (7/8, 1/8) del piano xy e la trasformazione lineare del segmento di estremi (1, 1), (7/8, 1/8) del piano xy e la trasformazione (1, 1), (1/8, 1/8) del piano (1/8, 1/8) d

sformazione lineare del segmento di estremi (0, 1), (1/2, 1/2) del piano uv nel segmento di estremi (3/4, 1/4) (7/8, 1/8) del piano xy.

Tenendo anche conto della trasformazione, sopra definita, del segmento di estremi (0, 1) (1, 1) del piano uv, nella curva Γ del piano xy, vengo così ad avere definita una trasformazione biunivoca e bicontinua del contorno del triangolo A_3 nella linea semplice chiusa C_2 , del piano xy, costituita dalla linea Γ e dai segmenti di estremi (3/4, 1/4), (7/8, 1/8); (7/8, 1/8), (1, 1).

In virtù del sopra citato teorema di Schoenflies è possibile estendere tale trasformazione biunivoca e bicontinua ad un omeomorfismo degli interni di A_3 e di C_2 , che si riduce al dato sul contorno di A_3 e su C_2 .

Sia

$$T_2: x = x_2(u, v), \quad y = y_2(u, v)$$
 $(u, v) \in A_2$

questa trasformazione.

Definisco infine T_2 in A_4 , come quella trasformazione lineare

$$T_2: x = x_2(u, v), \quad y = y_2(u, v) \quad (u, v) \in A_4$$

che fa corrispondere ai punti (0, 0), (0, 1), (1/2, 1/2) del piano uv rispettivamente i punti (0, 0), (3/4, 1/4), (7/8, 1/8) del piano xy.

La trasformazione T_2 che risulta così definita è continua.

Con lo stesso ragionamento di sopra si riconosce che in ogni punto del quadrato $0 \le \frac{x}{y} \le 1$ è

$$k(x, y; T_2) \leq 1,$$

essa risulta perciò a variazione limitata.

Con il medesimo ragionamento di sopra si riconosce anche che in ogni punto di Γ è

$$n(x, y; T_2) = 0.$$

Poichè T_1 e T_2 hanno il medesimo contorno il nostro asserto è provato.

BIBLIOGRAFIA

- [1] L. CESARI, Sulla trasformazione degli integrali doppi, «Ann. Mat. Pura Appl.», (4), 27, 321-374 (1948).
- [2] J. CECCONI, Su le funzioni caratteristiche e gli Jacobiani generalizzati, Nota I° e II°, «Riv. Mat. Univer. Parma», 1, 229-235 (1950).
- [3] T. Rado, Length and area, «Amer. Math. Soc. Colloquium Publications», vol. XXX.
- [4] T. RADO, Two-dimensional concepts of bounded variation and absolute continuity, « Duke Math. Jour. », 14, 587-608 (1947).
- [5] P. V. REICHELDERFER, Law of transformation for generalized Jacobians, « Duke Math. Jour. », 16, 73-83 (1949).
- [6] A. Schoenflies, Beiträge zur Theorie der Punktmengen, III°, « Math. Ann. », 62, 286-328 (1906).