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Sulla distribuzione delle tensioni interne
in un solido cilindrico sollecitato a torsione semplice.

Nota di ErNEsTo Pizzerrl (a Torino).

Sunto. - Si dimostra che la distribuzione delle tensioni interne nel caso
della tensione semplice soddisfa alle condizioni necessarie e sufficienti
per Uequilibrio richieste dal Teorema i MENABREA. Si applica poi tale
risultato alla teoria delle deformmazioni elasto-plastiche del materiale.

1. Come & ben noto, per la determinazione dello stato di equi-
librio elastico di un solido soggetto a forze esterne ed a vincoli
assegnati si pud procedere in due maniere diverse: ed applicando
il principio dei lavori virtuali oppure usufruendo del teorema di
MENABREA. Poiché la soluzione del problema dell’equflibrio ela-
stico & unica, si giungerd evidentemente con questi due metodi
allo stesso risultato.

In particolare nella teoria classica di DE SAINT-VENANT, per
risolvere il problema dell’ equilibrio elastico, si procede in modo
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indiretto, assegnando « priori la distribuzione di tensioni interne
in ogni singolo caso e verificando poi che tale distribuzione sod-
disfa alle equazioni indefinite dell’ equilibrio ed a quelle ai limiti,
che sono appunto le condizioni per 1’equilibrio volute dal prin-
cipio dei lavori virtuali. Sard perd la medesima cosa verificare
¢he il sistema dato di tensioni interne soddisfa alle condizioni
necessarie e sufficienti per 1’equilibrio richieste dal teorema di
MENABREA ed & proprio questo quello che io mi propongo di far
vedere nel caso particolare di una sollecitazione esterna del tipo
della torsione semplice.

Tale risultato mi servird poi per fare un’applicazione della
recentissima teoria del pref. ConoNNETTI (') sull’equilibrio dei si-
stemi, nei quali si presentano anche deformazioni permanenti. al
caso della torsione semplice,

2, Supposte verificate le condizioni di DE SAINT-VENANT, siano
1, le tensioni interne che si presentano nel solido cilin-
drico che si considera. Supponiamo che la distribuzione di tali ten-
sioni sia quella che si ha nel caso della torsione semplice, ciod la:
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ove G ¢ il modulo di elasticith tangenziale del materiale e ¢ e
sono rispettivamente una costante ed una funzione di x ed 7, che
determineremo in seguito.

Vogliamo ora verificare, secondo il teorema di MENABREA, che
tale distribuzione di tensioni rende minima la funzione

Il

{1)

(2) q):j;?(ca‘, Gy Gy Tyz: Tz T:ry)dv9
V.,
(ove con V abbiamo indicato lo spazio occupato dal solido ¢ con ¢
I’energia potenziale elastica elementare) rispetto a tutti i valori
che la funzione stessa pud assumere compatibilmente colle forze
esterne date.
Ricordiamo (?) percid che 1’ energia potenziale elastica elemen-

(') G. CoLoNNETTI, Su Uequilibrio dei sistemi nei quali si verificano
anche deformazioni non elastiche. <« Rend. Acc. Lincei », 1937, vol. XXV,
serie 6%,

() V. per es. G. CoLONNETTI, La statica delle Costruzioni. U.T.E.T.,
Torino, Parte secorida, Cap. 1I.
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tare nel caso di DE SAINT-VENANT si pud porre sotto la forma:

1/z
2E 2G ’
e riferiamoei ad un tromco di cilindro compreso fra due seziont
rette distanti fra loro dz, indicando con A 1'area di una sezlone
retta: allora I’ espressione (2) assume la forma:

d
2) v — & zE 5,2 A + 22/( po? T AdA.

2
G, 24 ‘Cz.,
o= 4

A causa della condizione di minimo, a cui deve soddisfare
I espressione (2') occorre che sia verificata 1 equazione :
17 LT PR
B 6,65, d4 + G , (73,37y; + T,007,,)dA =0,
A A

(3)

compatibilmente colle forze esterne e cioé compatibilmente alle
sei equazioni:

[35.-aa=0, [ia,-yda=0, "sc;.di;o,
A A A

}(ary;x —brpdAd =0, [¥,.dA =0, , 3 ,dA = 0.
. y .

che si chiamano appunto equazioni di compatibilita colle forze
esterne.

~ Infine sulla superficie laterale del cilindro deve mnotoriamente
ossere soddisfatta 1’ equazione

(4) Tm COS (B, ) T, COS (R, 4) =0,
ove n indica la normale al contorno della sezione che si considera.
Data la distribuzione di tensioni interne (1), si vede subito che

essa verifica identicamente tutte le equazioni di compatibilith ad
eccezione della

(-)’ f(xSTyz - yarzr)dAy

! 4 :
che 1-(~sta quindi Y unieca, equazmne di compatibiliti colle forze
esterne. ~

Verifichiamo ora che le (1) soddisfano all’equazione al con-
torno della sezione (4): sostituendo in essa le espressioni delle
tensioni dateci dalle (1), abbiamo

b oy
(bx -t 7;) cos (n, x) + (ay x) cos (n, ) =0,
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l : 1 (ohi dx (n, ) dy ", )
anche, poiche¢ = —=cos x) e == ¢cos (n,
ed an s b an , dn s U

oy de oY dy dy dax
g dn oy dn = Can " Yan'
e quindi
dy _ xdy — yda
dn = dn

Tndicando poi con f(x, y)=0 I equazione del contorno della
sezione A, si ha la formula finale

Bf of
dy dJ vyax

16) dn — 7

V-

¢ quindi, affinche la (4) sia verificata, occorre determinare una
funzione (x, y) tale che la sua derivata normale assuma al con-
torno i valori dati dalla (6): resta cosi determinata una prima
condizione alla quale deve soddisfare la funzione 4, finora in-
‘cognita.

Ritorniamo ora all’ equazione di equilibrio (31 la quale, giusta
le (1), si pud scrivere

4 ol
@) ’ (‘;_J — x) A+ [ (f + y) 3.,dA =0,
|

od anche

AN AN N N
It —_ . — Yot =90;
’(ax T P 3T, )dA ’!(:cor,,, Yot )dA
4 p

il secondo integrale & nullo a causa dell’equazione di compatibi-
lith (B) e ci resta quindi solo pit da dimostrare che ¢ nuilo

. */ad a,! .
() ’ (af 3T b o ov_@,;>dA.

A
\ 37, = — T'c[a(‘—")~ le.
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e quindi

: (ob. e, _
(8) .’(ﬁauz:ﬁ@aw)m_

B ”@i <27t> * Z?ﬁ (ai) oy — i&c]dA_

——Ge ”54’ (”’) o ( ﬂdA—k(’i[(in———q’Sy)dA.

ox iy

Consideriamo per ora solo il primo integrale dell’ ultimo membro
ed indichiamolo. per brevita, con (I): invertendo in esso i segni 3 e 9
ed applicando la formula di GREEN, si ha:

(=—Ge /L;f 1)+ a}éy’ ]dA Gf J—*’—)ds+ac/¢A o

—
0 2

Se introduciamo 1'ipotesi che ¢ sia una funzione armonica (da
cui discende immediatamente che anche &} & armonica (%)) abbiamo
che

v )::Gc’ di(SL)dS~Gc/q/[8x OJZn]ds_
e /]boxdq ,fq/d dx }(4),

ed applicando la formula di GAUSS'

(1) = — e W)dA G[ ihaliPy —-Gc/l%a?j——&y,.ﬂ

4
Sostituendo infine il valorve trovato per (I) nella (8) si ha:

o fmnfan == e[y~
‘/<a—a«:8rm~f»ay8‘ry,)df1—— Ge [ [bw 50— by 1| 44 +
A

+ GCA/[Sx Zj — 3y 34’}4111

(>} Basta infatti calcolare il A,(3¢) tenendo presente che ¢ & una fun-

zione armonica.
(*) Nel passaggio dal secondo al terzo membro di questa relaziome,

usufruiamo della seguente formula
aed) . W __,,

ANk LY VR oC A
an Can ™Y aw
la quale si deduce facilmente dalla (4) come sopra si & dedotta la for-

mula analoga N
ay __ wdy —ydw

an dn
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Resta cost dimostrato che (7) & nullo e che quindi & verificata
dalle (1) V' equazione di equilibrio (3).

La distribuzione di tensioni interne (1), quando si prenda per ¥
una funzione armonica, la cui derivata normale assuma al con-
torno i valori dati dalla (6) soddisfa dunque a tutte le condizioni
del teorema di MENABREA per I’equilibrio.

3. Supponiamo ora, riferendoci sempre al caso del solido cilin-
drico della teoria di DE SAINT-VENANT, che in gqualche punto al-
meno della sezione i limiti di elasticith del materiale siano stati
superati dimodoche oltre alle deformazioni elastiche <., v,., v, si
presentino anche delle deformazioni permanenti ¢, y,,, Y.» che
consideriamo come funzioni date del punto della sezione. Lie ten-

sioni interne che si presentamo nel materiale sono legate alle
deformazioni elastiche dalle note formule:

o, = E,, Ty :Gqu sz:GYzm

poniamo allora per analogia colla teoria delle deformazioni ela-
stiche e per brevita

¢, = EE,, Tys — Gsz’ T — G'sz:
con cid non vogliamo perd attribuire a tali nuove espressioni alcun
mgmﬁcato fisico, ma bensi un significato puramente formale.
La distribuzione delle tensioni interne e delle o, 'r“, T,. sia
del tipo della distribuzione di tensioni (1) sopra ccasiderata e cioé:

| —
1 Gz +Gz:O’

' — ?
) , ’rw + T, = — Gc(% — x),
Tzw“"'a—q_ac(ql y)

e verifichiamo se tale distribuzione soddisfa alle vondizioni neces-
sarie e sufficienti per 1’equilibrio elastico del soliuo e quale tipo
di sollecitazione caratterizza. Il teorema del prof. COLONNETTI, che
¢ V' analogo del teorema di MENABREA per il campo delle deforma-
zioni elasto-plastiche (%), ci dice che per Vequilibrio deve essere

(®) Ved. G. CoLONNETTI, loc. cit. in ('). Il teorema dice precisamente :
Le tensioni interne che caratterizzano lo stato di. equilibrio considerato
sono quelle che rendono minima I’ espressione

@ +ﬁex°x - 8yCy + €0, + YyoTye - YeaTer + Yay Ty} V),

-per rapporto a tutti i valori che 1'espressione stessa pud assumere compa-
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minima 1’ espressione

0ok [ T T,
)

per rapporto a tutti i valori che 1’ espressione stessa pud assumere
compatibilmente colla deformazione impressa e colle forze esterne
date. Come si & gid fatto nel caso delle deformazioni puramente
elastiche, troviamo che compatibilmente alle sei equazioni delle
forze esterne, deve essere soddisfatta I’ equazione di equilibrio

. (10) B ﬁc 40,80, dA + il /(r + 7, P1,.dA + é f('rzx+~—r;)8'cmd11 =0.
A A

Per la distribuzione considerata 9), resta al solito come sola
equazione di compatibilita la (), e la (10) assume la forma

, ‘oY , 2y o
(10 A/ (5?} — x) 3t,.dA + [ (ég + y) 81,,d4 = 0.
A

Lo stesso calcolo fatto sopra per il caso delle deformazioni ela-
stiche ci dimostra che la (10') & completamente verificata dalle (9),
quando si tenga presente che possiamo considerare le v,, e Y.~ COMeE
delle costanti in quanto ricerchiamo le tensioni interne che carat-
terizzano lo stato di equilibrio compatibilmente colla deformazione
impressa. .

Le tensioni interne dovranno poi soddisfare anche 1 equazmne
al contorno della sezione (4).

Sostituendo i valori di 7,, e t,, dateci dalle (9) e procedendo in
modo analogo a quello che si & fatto precedeniemente, otteniamo
che la funzione Y (che per soddisfare (10°) deve essere armonica)
deve verificare al contorno la relazione

— s \dy — Tax
dy (x Gc) Y (y+ Gc)dw
dn dn )

Risulta quindi che per la determinazione della funzione Y bi-
sogna risolvere il problema di NEUMANN relativo alla sezione consi-
derata ed alla distribuzione di valori al contorno (11). Perd, affinche
tale problema abbia soluzione, occorre che si verifichi al contorno
la nota proprieta delle funzioni armoniche
‘dy ‘
dn

(1)

ds =0, .

tibilmente colla defonmazmne impressa e colle forze esterne date. Poiché
nel nostro caso siamo nelle ipotesi di DE SAINT-VENANT l’esp1ess1one si
riduce a quella scritta.

=
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cid che porta come conseguenza che le t,, e 7., devono soddisfare
alla relazione :
h —d — dx
f(ry, ﬂz + T, %)ds = 0.
4 ‘

In particolare le T—yz e t,, verificheranno certamente tale condi-
zione se si suppone che
’ —dy — dx
e dn T " dn
- ciot se si suppone che le deformazioni permanenti verifichino la
medesima - equazione al contorno della sezione che deve essere
soddisfatta dalle deformazicni elastiche: tale ipotesi & poi piena-
mente giustificata dal fatto che le deformazioni plastiche sono
determinate dalla stessa sollecitazione esterna che determina le
deformazioni elastiche (5). v
Visto in tal modo- che le (9) soddisfano a tutte le condizioni
necessarie e sufficienti per I’equilibrio, calcoliamo il valore del
momento torcente (unica sollecitazione esterna che non sia nulla)

=0,

»

_ G| _
Qf A/(rw - T, Y)dA = Gc]( x y)dA—f—GcJ G/ (Yys2 — Ysxtf)dA

ove J, & il momento d’ inerzia polare della sezione rispetto al suo
barlcentro Ponendo : -
b
7~ ( )i

0 C—‘—— G/.sz me A

si ha

da cui si ricava il valore della costante ¢ (finora indeterminata)

Q-+ G ﬁ?;x — 1..y)dA
A

c=q GJ, ’
.che differisce dal valore assegnato dalla Teoria dell’Elasticita
per [ﬁ;w—n—:y)dA 0)-

4
Sostituendo poi il valore di ¢ nelle (9) resta allora pienamente
determinata la distribuzione delle tensioni interne e delle s,, 7., 7,,.

() Ved. G. CoLoxNNETTI, Saggio di una teo;}la generale dell’ equilibrio
elasto-plastico. « Atti della Pontificia Accademia delle Scienze », 1937.
() Ved. G. CoLONNETTI, loe. cit. in (5),



