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Sulla distribuzione delle tensioni interne 
in un solido cilindrico sollecitato a torsione semplice.

Nota di Ernesto Pizzetti {a Torino).

Sunto. - Si dimostra che la distribuzione delle tensioni interne nel caso 
della tensione semplice soddisfa alle condizioni necessarie e sufficienti 
per V equilibrio richieste dal Teorema di Menabrea. Si applica poi tale 
risultato alla teoria delle deformazioni elasto-plastiche del materiale.

1. Come è ben noto, per la determinazione dello stato di equi­
librio elastico di un solido soggetto a forze esterne ed à vincoli 
assegnati si può procedere in due maniere diverse : ed applicando 
il principio dei lavori virtuali oppure usufruendo del teorema di 
Menabrea. Poiché la soluzione del problema dell’ equilibrio ela­
stico è unica, si giungerà evidentemente con questi due metodi 
allo stesso risultato.

In particolare nella teoria classica di De Saint-Venant, per 
risolvere il problema dell' equilibrio elastico, si procede in modo
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indiretto, assegnando a priori la distribuzione di tensioni interne 
in ogni singolo caso e verificando poi che tale distribuzione sod­
disfa alle equazioni indefinite dell’equilibrio ed a quelle ai limiti, 
che sono appunto le condizioni per l’equilibrio volute dal prin­
cipio dei lavori virtuali. Sarà però la medesima cosa verificare 
che il ' sistema dato di tensioni interne soddisfa alle condizioni 
necessarie e sufficienti per l’equilibrio richieste dal teorema di 
Menabrea ed è proprio questo quello che io mi propongo di far 
vedere nel caso particolare di una sollecitazione esterna del tipo 
della torsione semplice.

Tale risultato ini servirà poi per fare un’applicazione della 
recentissima teoria del prof. Colonnetti (*) sull’ equilibrio dei si­
stemi, nei quali si presentano anche deformazioni permanenti, al 
caso della torsione semplice.

2. Supposte verificate le condizioni di De Saint-Venant, siano 
*>,, t,/2, T2r le tensioni interne che si presentano nel solido cilin­
drico che si considera. Supponiamo che la distribuzione di tali ten­
sioni sia quella che si ha nel caso della torsione semplice, cioè la:

ove G è il modulo di elasticità tangenziale del materiale e c e 
sono rispettivamente una costante ed una funzione di x ed y, che 
determineremo in seguito.

Vogliamo ora verificare, secondo il teorema di Menabrea, che 
tale distribuzione di tensioni rende minima la funzione

(2) 4>=Jÿ(cra,, ay, a., tix, txv)dV,

V .
(ove con V abbiamo indicato lo spazio occupato dal solido e con © 
l’energia potenziale elastica elementare) rispetto a tutti i valori 
che la funzione stessa può assumere compatibilmente colle forze 
esterne date.

Ricordiamo (2) perciò che l’energia potenziale elastica elemen-

p) G. Colonnetta Su V equilibrio dei sistemi nei quali si verificano 
anche deformazioni non elastiche. « Rend. Acc. Lincei >, 1937, vol. XXV, 
serie 6a.

(2) V. per es. G. Colonnetta La statica delle Costruzioni. U. T. E. T.„ 
Torino, Parte seconda, Cap. II.
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tare nel caso di De Saint-Venant si può porre sotto la forma:

? — 2E 2G '

e riferiamoci ad un tronco di cilindro compreso fra due sezioni 
rette distanti fra loro ds, indicando con A Farea di una sezione 
retta: allora l’espressione (2) assume la forma:

|2') Äch = ÿ <7/dA + D j ( V + r^dA.
À À

A causa della condizione di minimo, a cui deve soddisfare 
F espressione (2') occorre che sia verificata F equazione :

(3) £ I -+- à I (S/A,/3 -+• — 0.

A A

compatibilmente colle forze esterne e cioè compatibilmente alle 
sei equazioni :

I o<7z. dA = 0, y*o<7, • ydA — 0, I o<7„. xdA = 0, 

A A À

I (oTV2æ — OTzcry)dA = 0, y*StyzdA — 0, otzccdA = 0,

À A A

che si chiamano appunto equazioni di compatibilità colle forze 
esterne.

Infine sulla superficie laterale del cilindro deve notoriamente 
essere soddisfatta F equazione

(4) cos (n, x) -+- tyt cos (n, y) — 0,

ove n indica la normale al contorno della sezione che si considera.
Data ìa distribuzione di tensioni interne (1), si vede subito che 

essa verifica identicamente tutte le equazioni di compatibilità ad 
eccezione della

(•») jAv — yAAU
'A

<■1)0 resta quindi l’unica equazione di compatibilità colle forze 
esterne.

Verifichiamo ora che le (1) soddisfano all’equazione al con­
torno della sezione (4) : sostituendo in essa le espressioni delle 
tensioni dateci dalle (1), abbiamo

/ \ / A'I \
Uìc y ) C0S w — æ) COS (n, y) — 0,
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. ’ dx dy
ed anche, poiché — cos (n, x\ e cos (w, £/),

e quindi

c-p dx 9'1/ dy dy dx
dx dn dy dn x dn dn *

xdy — ydx 
dn dn

Indicando poi con f(x, y} = 0 l’equazione del contorno della 
sezione A, si ha la formula finale

e quindi, affinchè la (4) sia verificata, occorre determinare una 
funzione 'b(x, y) tale che la sua derivata normale assuma al con­
torno i valori dati dalla (6): resta così determinata una prima 
condizione alla quale deve soddisfare la funzione finora in­
cognita.

Ritorniamo ora all’equazione di equilibrio (3). la quale, giusta 
le.(l), si può scrivere

<3') I — x ) oTvzdA -F 1( y ) òr.vdA — 0.
J \dy ) 2/2 / \dx J j

A À
od anche 

il secondo integrale è nullo a causa dell'equazione di compatii»! 
lità (5) e ci resta quindi solo più da dimostrare che è nullo

dA — j (æor,,, — yÌTzr)dA — 0 ;

V) I \dx
\ J 4

Perciò osserviamo die dalle (1) otteniamo

(1'1
> - r RPb ' 1|OT-=-fTC[°U)~Oirr
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e quindi

,81

~ ~ &cj [di Kw + èy 8M + dxby ~~ Sy H dA ~

= _ Gc/T^ gf®Ì) -4- 8f»e/Z^J[dx \dxj dy \dy) I J\dy dx
À À

Consideriamo per ora solo il primo integrale dell’ ultimo membro 
ed indichiamolo, per brevità, con (Z) : invertendo in esso i segni 8 eS 
ed applicando la formula di Green, si ha :

lTc’l> 8 9'L 8 1 Ç d(8'-p) i
(I) = ~Gc ~ MA -+- - (3’}) dA = Gert ds -+- Gc ^(S^dA.7 'J[dxdxx 17 dydyv T7J p dn P 21 T7

À 3 A

Se introduciamo l’ipotesi che sia una funzione armonica (da 
cui discende immediatamente che anche 8-} è armonica (3)) abbiamo 
che

(I) = Gch~ (S'Ms = GcUhx^- — 3y^]ds =
v 7 / ' à '7 JT [ dn J dn\

3 S

= 44to?*-fa»? *1'''.d# p J dn J
8 8 »

ed applicando la formula di Gauss :

M . «-Eà - - - •»«]■“•
A A A

Sostituendo infine il valore trovato per (I) nella (8) si ha :

/ (S 8t--E st-) ìa=- Gcllsx 3 ~
A A

r\ dû si-1+ Gc/
/ L oy

A

P) Basta infatti calcolare il A2(8cp) tenendo presente che ch è una fun­
zione armonica.

0) Nel passaggio dal secondo al terzo membro di questa relazione, 
usufruiamo della seguente formula

diLchj „ dy . dx
à dn dn

la quale si deduce facilmente dalla (4) come sopra si è dedotta la for­
mula analoga

dch xdy — ydx
dn — dn
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Resta così dimostrato che (7) è nullo e che quindi è verificata 
dalle (1) 1’ equazione di equilibrio (3).

La distribuzione di tensioni interne (1), quando si prenda per 
una funzione armonica, la cui derivata normale assuma al con­
torno i valori dati dalla (6) soddisfa dunque a tutte le condizioni 
del teorema di Menabrea per l’equilibrio.

3. Supponiamo ora, riferendoci sempre al caso del solido cilin­
drico della teoria di De Saint-Venant, che in qualche punto al­
meno della sezione i limiti di elasticità del materiale siano stati 
superati dimodoché oltre alle deformazioni elastiche s3, si
presentino anche delle deformazioni permanenti e3, yyz, yzx che 
consideriamo come funzioni date del punto della sezione. Le ten­
sioni interne che si presentarne nel materiale sono legate alle 
deformazioni elastiche dalle note formule :

L  L/2   La?   ^Yza?ì

poniamo allora per analogia colla teoria delle deformazioni ela­
stiche e per brevità

L 'ty*   ^Y2/3, La?  ^Yra?"

con ciò non vogliamo però attribuire a tali nuove espressioni alcun 
significato fisico, ma bensì un significato puramente formale.

La distribuzione delle tensioni interne e delle <r5, tyz> xzx sia 
del tipo della distribuzione di tensioni (1) sopra c< usiderata e cioè:

• L L Gz "zzz 0,
I — « pi \

(9) + V =

I — r M \

e verifichiamo se tale distribuzione soddisfa alle condizioni neces­
sarie e sufficienti per l’equilibrio elastico del solmo e quale tipo 
di sollecitazione caratterizza. Il teorema del prof. Jolonnetti, che 
è l’analogo del teorema di Menabrea per il campo delle deforma­
zioni elasto-plastiche (5), ci dice che per l’equilibrio deve essere

(5) Ved. G. Colonnetti, loc. cit. in (4. Il teorema dice precisamente : 
Le tensioni interne che caratterizzano lo stato di equilibrio considerato 
sono quelle che rendono minima l’espressione

Y ZX^ZX +■ Y

V
per rapporto a tutti i valori che l’espressione stessa può assumere compa- 
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minima F espressione
. 't> -I-ßw, + Wy, ■+■

v
per rapporto a tutti i valori che F espressione stessa può assumere 
compatibilmente colla deformazione impressa e colle forze esterne 
date. Come si è già fatto nel caso delle deformazioni puramente 
elastiche, troviamo che compatibilmente alle sei equazioni delle 
forze esterne, deve essere soddisfatta F equazione di equilibrio

(10) jß 5a -+- dA -+■ â-+- t^^dA + «A-A - 0.

4 A '
Per la distribuzione considerata (9), resta al solito come sola 

equazione di compatibilità la (ò), e la (10) assume la forma

(10') [^- — x]^ìlidA+[£-t-y\^xdA = 0.
J w/7 1 J /
A A

Lo stesso calcolo fatto sopra per il caso delle deformazioni ela­
stiche ci dimostra che la (10 ) è completamente verificata dalle (9), ✓ 
quando si tenga presente che possiamo considerare le e ÿi(V come 
delle costanti in quanto ricerchiamo le tensioni interne che carat­
terizzano lo stato di equilibrio compatibilmente colla deformazione 
impressa.

Le tensioni interne dovranno poi soddisfare anche F equazione 
al contorno della sezione (4).

Sostituendo i valori di ryz e dateci dalle (9) e procedendo in 
modo analogo a quello che si è fatto precedentemente, otteniamo 
che la funzione (che per soddisfare (10 ) deve essere armonica) 
deve verificare al contorno la relazione

— L + &
M n Gc' v Gc>
v’ dn dn

Risulta quindi che per la determinazione della funzione bi­
sogna risolvere il problema di Neumann relativo alla sezione consi­
derata ed alla distribuzione di valori al contorno (11). Però, affinchè 
tale problema abbia soluzione, occorre che si verifichi al contorno 
la nota proprietà delle funzioni armoniche

1cks —0.J dn

tibilmente colla deformazione impressa e colle forze esterne date. Poiché 
nel nostro caso siamo nelle ipotesi di De Saint-Venant l’espressione si 
riduce a quella scritta.
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ciò che porta come conseguenza che le ryz e Taar devono soddisfare 
alla relazione

C{ — dn — dx\ 
/ \xvz ir ■+* -j- \ds = 0.J \ y dn zx dn)

In particolare le ryz e verificheranno certamente tale condi­
zione se si suppone che

— à — à
T — —I— T ___  — n
Vidn zxdn~ ’

cioè se si suppone che le deformazioni permanenti verifichino la 
medesima equazione al contorno della sezione che deve essere 
soddisfatta dalle deformazioni elastiche : tale ipotesi è poi piena­
mente giustificata dal fatto che le deformazioni plastiche sono 
determinate dalla stessa sollecitazione esterna che determina le 
deformazioni elastiche (6).

Visto in tal modo che le (9) soddisfano a tutte le condizioni 
necessarie e sufficienti per 1’ equilibrio, calcoliamo il valore del 
momento torcente (unica sollecitazione esterna che non sia nulla) 

r rM dd/ \ r__  __
— Tlry}dA = -^GcJ{—x — —yjdA-t-GcJ^—GJ^x — -'zxy)dA

ove JT0 è il momento d’inerzia polare della sezione rispetto al suo 
baricentro. Ponendo :

’ " - ^0

V T \ ’
J a — i\ — x — -^-nìdA J W / 

A
si ha

Q—Gc-^— G  ̂tyix — -(zxy)dA,

À
da cui si ricava il valore della costante c (finora indeterminata) 

Q -t- G-^t/zx — -(zry)dA

c = q--------^-GJ.------------- ’

che differisce dal valore assegnato dalla Teoria dell’Elasticità 
per ^x — f^y)dA (7).

À
Sostituendo poi il valore di c nelle (9) resta allora pienamente 

determinata la distribuzione delle tensioni interne e delle rzx.

(6) Ved. G. Colonnetti, Saggio di una teoria generale dell3 equilibria 
élasto-plastico. « Atti della Pontificia Accademia delle Scienze », 1937.

(7) Ved. G. Colonnetti, loc. cit. in (6).


