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PICCOLE NOTE

I polinomi di Hermite e di Laguerre come autosoluzioni (*).

Nota di Matrro PicoxE (a Roma).

Sunto. - Per due ben note equazioni differenziali ordinarie, lineari, onc:-
genee, del second’ ordine, contenenti linearmente .un parametro, si sta-
bilisce che certi comportamenti -— che si reputano non ancora stati
considerati — mnegli intorni dei punti singolari per esse, prescritti alle
soluzioni, caratterizzano, con determinati spetiri per il parametro, @

4 polinomd, rispettivamente, di HERMTE e di LAGUERRE, come autoso-
luzioni. :

Per il polinomio di HerMITE di grado = :
dll
x) — 2 —a?
Hu(‘l:) - (— 1)” ev da e—%,
sussiste 1’eguaglianza
H,)” —2xH, + 2nH, =0,
¢ nel preziosissimo libro di CourANT e HILBERT (}). a pag. 283.
trovasi dimostrato che se si ricercano valori reali del parametro 2
nell’ equazione differenziale del second’ordine :

1) H"” —2xH' + 3H =0, ‘
per ciascuno dei quali esiste una soluzione. non identicamente
nulla, di tale equaziome che, per [x — oo, verifichi definitiva-
mente una limitazione del tipo

@ H@)| < Mo,

con M e o costanti positive, si trova che essi sono tutti e soli i
numeri interi pari non negativi 2r e che, per ognuno di essi, le

(*) Lavoro eseguito nell’Istituto per le Applicazioni del Caleelo del
Consiglio Nazionale delle Ricerche.

(*) R. Courant und D. Hinserr, Methoden der Mathematischen Phisik I.
[Zweite Aunflage, Springer, Berlin (1931)],
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soluzioni della (1) godenti di detta proprietdh sono tutte date dal
polinomio H (x) moltiplicato per una costante arbitraria. 11 poli-
nomio H, (x) pud percid considerarsi come autosoluzione dell’ equa-
zione differenziale (1) con la condizione (2) alla frountiera del campo
d’ esistenza delle soluzioni della (1), che & I’intero asse reale.

Presentatamisi in una recente ricerca la necessity di caratte-
rizzare le autosoluzioni della (1), anche per valori di X non neces-
sariamente reali, dotate di una crescenza all’infinito piit forte di
quella consentita dalla limitazione (2), sono pervenuto al seguente
teorema che, reputandolo nuovo, mi sembra utile pubblicare.

TeorEMA H. — Tutti e soli ¢ valori di h (reali o complessi)
nell’ equazione (1) per ciascuno dei quali esiste una soluzione H(x)
— diversa dallo zero -— della (1) stessa, che, per | x| — oo, verifichi
definitivamente una limitazione del tipo

(3) P H(x) | < MR,

con M e = costanti positive, sono i numeri interi pari non nega-
tivi 2n e per ognuno di questi le soluzioni della (1) godenti di-detta
proprieta sono tutte date dal polinomio Hy(x) di HERMITE moltipli-
cato per una costante arbitraria.

Scopo della Nota presente & di esporre la dimostrazione di
questo teorema e di indicare rapidamente quella analoga del se-
guente :

TeorEMA L. — Tutti e soli i valori di ) (reali o complessi)
nell’ equazione differenziale

{4 el + (1 —a)L' + AL =0, (x> 0),

considerata nel semiasse reale positivo (aperto), per ciascuno dei
qunali esiste una soluzione 1{x) — diversa dallo zero — dell’ cqua-
zione, che, per x — oo, verifichi definitivamente una limitazione del
tipo .

(M | L{w) | < Me*a,

con M e o costanti positive e, per x — 0, la relazione di limite

6 lim (xL/(x)) = 0,

x—0

sono & numeri inleri non wnegalivi m, e per ognuno di questi le
soluzioni della (4) godenti di dette propmeta sono tulte date dal
polinomio di iacuenrwr

n

i @)

I‘n(w) =e” da®

b

maoltiplicato per una costante arbitraria.
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1. Un problema al contorno sull’asse reale e la relativa
funzione di Green. — Con la sostituzione
(7) | 4 = He~2",

la (1) si cangia nella seguente

2 d 2 d\b 2,
8) g (ew dx) (h 4 2exy = 0,

e porremo

pe=Veiuve, g ="00 0w
If,,(
) = Tt

e— a2 — 1, (96)6’”9/2
”n

Il sistema [o,(x)] (n =0, 1,..), delle funzionidi HERMITE, & orto-
gonale ¢ normale sull’asse reale e, notoriamente, ivi completo per
U"approssimazione lineare, in media. delle funzioni (reali o com-
plesse) di norma sommabile sul detto asse. 4 '

Per le funzioni ¥, (x) sussistono le eguaglianze

d dy,
(8,) C dx (e <& “doe ) -+ 2(n+ ey =0, n=0,1,..),
e sono verificate le condizioni all’infinito
9) lim ()= lim ¥& _o
joe] —» 0o le| —>00 XL ’

ed & immediato che la funzione di GREEN, relativa a queste con-
dizioni, per I’ espressione differenziale

,
nm—g;c(em =)
che compare al primo membro delle (8) e (8,) riesce cosi definita:

6 =00, per ey,

:11(%%@), per w31,
con

x ~+00

() :l{e—s"’ds, o) == [e“szds.

00 ©
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Si ha
lim wx)= lim o(x)= ‘,/VTV:, wx) + v@) =V,
P —»r + 00 X —r —00
1
(10/) ’M/('T‘) < Q;;T&z . per  x << 07
' 1
(.10//) U(x) « W s per x> 0.

Sia f(x) un’assegnata funzione continua (reale o complessa) e
consideriamo il problema, al contorno sull’ asse reale, della, deter-
minazione di una soluzione y(x) dell’equazione differenziale

d db
(1) B )= g (e 32) + iy =o.

verificante le condizioni (9). Se @, b e ! sono tre numeri rveali, ed
& a <t <b, dalla (11) si trae .

(% )

YE) = e[y (b) — Uby'(b)] — V(-) e“la(a)y (@) — Uapd(@)] +

b

+J Gz, E)f(x)da.
[47
Ora, in virtu delle (10), si ha, per b >0,

&b o(b)Y (b) — UD)(D)] < \ ) \ U

e, per a < 0,

o) () — Hapw(a)] < | 130

+ )|

e pertanto il teorema:

1. Se la (11) possiede una soluzione Y(x) verificante le condizioni (9),
U integrale improprio

-+00

(12) Jea v,

deve, ber ogni x reale, risultare convergemte, e st ha
(13) ‘ Ya) = f Glx, )f(5)d:.

Non pud dunque esistere pitt di una soluzione della (11) verifi-
cante le condizioni (9).
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Agsumiamo ora, comunque, una funzione continua f(x), tale che
il rapporto

(14) plee) = (1 |f(90)|

+ |w|)ert” -

riesca sommabile sull’asse reale. Ogni soluzione Y(x) della (11) -
verifica allora la seconda delle condizioni (9), si ha ciod sempre
lim (y'/x) (per |®!—=o00)=0. Assegnato invero, arbitrariamente, un

numero positivo ¢, ne esiste un altro (;(s), tale da risultare /p(x)dx <,

c

e dalla (11), per x > cl¢), si trae

el (x)] < ]eC”" |+ / £)e* d;, :

V@) _[e?¥(@] | 1+ fe@)d'

x xer® x

=3

c

donde lim” |{'/x| (per x— + oc) < e (%). D’ altra parte 1 integrale

) @ -+oo
13)  Ya)= f G(a, z)ﬂ&)d*:’%ﬂ fu(sms)dz f )

viesce allora sempre, per ogni x reale, certo convergente, anzi

addirittnra ad integrando sommabile sull’ asse reale e se pren-
o0

diamo un cf¢) positivo talmente grande che, essendo f playdx -7 e,

c
risulti anche, per x = c(c), (1 + x)/x << 2, segue dalla (13), in virta
della (10"),

[+ 1/59;;2\/ fu(i)if(i);ds+.2s,

-—00

e quindi lim” |{{x)| (per x — -+ o0) << 2:. Si ha dunque:

II. Comunque si assuma una funzione continua £(x), per la quale
il rapporio (14) riesce sommabile sull asse vreale, esiste sempre una
ed una sola soluzione della (11), fornita dalla (13), infinitesima per

x| == o<,

(?) Secondo le notazioni delle mie- Lezioni di Analisi infinitesimale
{« Circolo Matematico di Catania », Catania (1923)], con lim' e lim"” indico’
rispettivamente, il minimo ed il massimo limite.



210 BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA

Se ora si riflette che e®}, — H, /p,, verifica le ipotesi test® con-
template per la f(x) e la ¢,, infinitesima per |x|— oo, I’equa-’
zione differenziale (8,), si ha che:

ITL. Per la funazione yu(x) sussiste I’equazione integrale

—+-00
@) = 20 -+ 16z, 9oy, 01,

e quindi, per la funzione di Hermile ¢u(x), la seguente (di R. NEUMANN)
v -4-00
() = 2(n +1) Tz, S)o, (E)dE (%),
con
Ux)VE
UEV(x
_ Ul ‘z/ @ e
xX ) 400

Ulx) = ew’/%/»e— #ds, V(x)= (300"/2‘[9—"2 ds.

—00 @x

T, &) =

4
r a2k,

Si ha
0 < Ue) < Vel 0< Vi) < Vres?, Ula) + Viw) = Vzen,

1
(10/) U(x) < W/’?, per x < 0,

(10”) Via) < 2—5—19”2 per > 0.

Il nucleo I'(x, §), reale e simmetrico, del quale dunque i nu-
meri 2(n+1) (n=0,1,..) sono autovalori, con le corrispondenti
autosoluzioni normali, ¢,(x), verifica, nel piano intero (x, &), tutte le
ipotesi dei nuclei per i quali & valida la teoria HILBERT-SCHMIDT
delle equazioni integrali lineari di seconda specie, aventi per campo

~q’ integrazione ! intero asse reale, )0%1“ tutte le necessarie proprieta

qualitative si ha, invero, per ogny x reale, definitivamente, per
]E]"’OO, S

2 S e
P8 < g

() Cfr. A. KNESER, Die Integralgleichungen wnd ihre Anwendung in
dé«t/' mathematischen Physik. [« Vieweg und Sohn », Braunschweig (1911)],
p. 242
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e, per esempio, per x> 0,
4”—& 1 @ i 00
. ) er? d’; .
T, Hdf <« - | F s . 2. | 25
j ( Y ) s << 471::1;?69”2 U (s)ds -+ 4 226£2’
— a0 oo x

laddove

—+o0
e* [ df,

x
. 1 1
1 3 2, 25\ E .
i el e+ o] =1

se ne deduce che, per |x|— oc, riesce definitivamente

. oo 1
{15) . 3w, E)dé < 3]‘”[3’

e sussiste dungue anche la sommabilith, su tutto il piano (x, &), del
quadrato del nucleo I'(x, &) ().

(*) Le conseguenze che permette subito di trarre, nel caso presente,
la consentita applicabilita della teoria classica delle equazioni integrali
lineari non sono trascurabili, specialmente per la circostanza che, detto
Ty(a, §) il primo nucleo iterato, T',(x, ) riesce, in virtt della (15) del testo,
limitato sull’ asse reale. Ne segue, in primo luogo, che nelle eleganti for-
mole sommatorie .

oc
Pr(@)ypnlE)

1 =\ _PRIPRE) —

21-49T, (a, ) _}CZO (o 1y (v=:1,2,...),
ove Ty(wx, £) designa il vme nucleo iterato, le serie al secondo membro
convergono assolutamente ed uniformemente in tutto il piano. 8i ha, in
particolare,
« 1:3...(2k—1) 1

r2l0 Ty (0, 0) :kzo 2.4.. (2k) 2k 1)1+

v=1,2..).

Sia, in secondo luogo, y(x) una funzione dotata ovunque di derivata '
prima, assolutamente continua in ogni intervallo finito, tale riuscira
n(2) = y(x)e—=*2, e supposto che x(x) verifichi le (9), cioé che

!
*) lim (ye—*°2) = lim (y_ e—wz/‘é’):(),
jao} > 00 [} —> 00

si avra
~t-00
) = — [ 6, HELOI

© quindi, per essere 2—12/2E[n] =y" — (1 + &Yy,
-+00
() y(@) =@, HLL+Ey(E) — v @)%

—00
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2. Dimostmzione del teorema H. — Sia H(x) una solﬁzione
della (1) verificante la (3). Sussiste allora la (8) per la Y(x) data
dalla (7), laddove, poiché per || ~— oo, & definitivamente

|Y@)| < Me—=12| |7,
si avra lim J(x) “;“(per @] — c0) =0 e la sommabilith sull’asse. reale
del rapporto

AU e )l
l+|x)er — 1+ |x;”

Segue dal teorema II che

o0

(16) Ya) = O+ 2)[ Gla, DS YOI

riuscendo I'integrando al secondo membro, per-ogni valore reale di x,
sommabile sull’asse reale, e pertanto, posto A + 2=y, e¥2}(x) = v(x),
+-00

1) sla) = o [T, BelE):,
) w-—30
con la stessa proprietd per I’integrando al secondo membro, aven-

dosi, definitivamente per |x| — oc,

(18) 9l@)| < M|x|

Per dimostrare. dunque, il teorema H, basterd, in base al teo-
rema IIT, far vedere che ogni funzione o(x) verificante le (17) e (18)

da qui, di nuovo, segue, con ben note considerazioni, la completezza del
sistema delle funzioni di HERMITE ¢,(x) e segue anche che, se, con le (¥),
riesce ¥’ — (1 +x?)y di norma sommabile sull’asse reale, la y(x) & svi-
luppabile in serie di FoURIER nel sistema [p,(x)], la serie risultando
assolutamente ed uniformemente convergente sull’intero asse reale. Nelle
indicate ipotesi, poiche le ¢,(x) sono tutte infinitesime all’infinito, tale
dovra dungue risultare la y(x), e dalla (¥*) si ricava effettivamente che
y(@) o infinitesima all’infinito, almeno dell’ ordine 3/2 rispetto a 1/|xl, e si
ricava altresi che tale ¢ anche y'(x), almeno dell’ordine 1/2. Viceversa,
se y(x) ¢ infinitésima all’infinito e y" — (1 + x?)y —=e—**2E[y] & di norma
sommabile sull’asse reale, la %(x) verifica le (9) del testo o si ha dunque
[Cfr. WERA MyYLLER-LEBEDEFF, Die Theorie der Integralgleichungen in
Anwendung auf einige Reihenentwicklungen, « Math. Ann. », 64 Band, 1907}
il teorema: Ogni funzione y(x) infinitesima per |x | — co, per la quale y'(x)
é assoZuta;nenﬁe continua in ogni intervallo finito e y' — (1 +x%)y dé
norma sommabile sull’ asse reale, é sviluppabile in serie di FOURIER nel
sistema [pn(x)], delle funzioni di HERMITE, la serie risultando assoluta-
mente ed uniformemente convergente sull’ intero asse reale.
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riesce di norma sommabile sull’asse reale; poich®, essendo il si-
stema [9,] completo su tale asse, la (17) non pud avere ivi altra
autosoluzione di norma sommabile che non sia una delle ¢, (x)
moltiplicata per una costante (°). Ora noi dimostreremo, di piu, che

(°) Ai fini della teoria generale delle equazioni integrali & certo istrut
tivo rilevare 1’esempio fornito dalla (17), la quale, se .si foglie alle sue
autosoluzioni la condizione della sommabilita della norma sull’ asse reale,
oltre a quelle del sistema completo [¢n], possiede infinite allre autosoluzioni.
B facile infatti verificare che, per A = 2n, & autosoluzione della (16) non
soltanto la soluzione ¢, (x) dell’equazione differenziale (8) per A =2n, che
da luogo all’autosoluzione ¢, (x) della (16) gia considerata, ma lo & anche
una qualsivoglia soluzione ¢(x) della stessa equazione differenziale. Detto,.
invero, (—¢,, ¢,) un intorno dell’origine che contenga tutti gli zeri del
polinomio H,(x}), una soluzione ¢ della (8) per X =2n, ha, per |x|>c¢,,
I’ espressione

| o
W] b = a(a))y(a) + blo) Hy(x)e— [ HE) a5,
96’0
ove x, © una costante arbitraria >¢, se x > cn o < —¢y 80 &< — ¢y,
e a(x,), b(x,) sono determinate funzioni di «,, indipendenti da . Per
potere affermare che ¢ & auntosoluzione della (16) per A =2n, bastera ve-
rificare, in ‘base al teor. II, che essa & infinitesima all’infinito e che
[ (e} /(1 4+ ||) riesce sommabile sull’asse reale. Ora, effettivamente, se
prendiamo ¢, talmente grande che I’intorno (- ¢,, ¢,) contenga anche
gli zeri del polinomio
202 H, — (n + 1)H,, — aH,/,
si ha, per |x|>c,, .
bladerr  bmy)
| }1m (Y1) = =, lhm S H, = (n+ DH, —aH, — w1
donde la detta verifica e un’ulteriore caratterizzazione dei polinomi di
HerMITE espressa dal teorema: Per ogni soluzione H(x) dell’ equazione
differenziale (1), per A = 2n, esistono, determinati e finiti, entrambi i limiti.
lim (e~®%xn+tHx)), lim (e—#*an+1H(x)),
%~ —o0 — 400
e condizione necessaria e sufficiente afﬁnché la soluzione sia il polinomio di
HERMITE molt@plwato per una costante é che uno di quei limili sia lo zero..
Notiamo anche che: Tutte le soluzioni dell’equazione integrale
- . oo :
#@) =20 + 1) [P(o, o,
' —00
sommabili in ogni-intervallo finito, per le” quali Uintegrale al secondo-
membro riesce convergente, per ogni x reale, sono date da quelle del-
U equazione. differenziale delle funzioni di Hermile:

¢+ (1 — 2% + 2ngp =0.
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. ogni soluzione della (17) veri,ficante la (18), riesce, per |2! — oo,
infinitesima d’ ordine comumnque elevato rispetto a 1/|x]. Detto,
invero, ¢ un tal numero positivo che, per x > ¢, risulti jcp ()} << Max>,

dalla (17) si trae
c

x
\‘P(x)l “"1 (- g ‘J!]‘/[ 22,
19) x*—2 = 2\/;cxaﬂiga:2/2j U@ ¢ ids + ‘)‘4171731’79 e* i 4
—30
“+o0o ¢
[ o2 57
+ gt | gr
Ma
@€X 400
W 1 2y ) g2 [Er—1
T—I—I:lm(pjeixﬁj e > ’) —x P_tr_r‘_lm(xa_tz/ £2/2 d’)
¢ 2

e pertanto, segue dalla (19) che, per x-— 4 oo, riesce definitiva-
mente

Tp@) ] < (1+ 2! | M )ar—2,
¢, dalla vipetuta successiva applicazione di questa considerazione,

che, per ogni numero naturale v, esiste tn numero positivo M, tale
che per & — + oo riesce definitivamente

(o) | < Mo,

c¢iv che dimostra quanto si voleva.

3. Dimostrazione del teorema L. — Posto ¢ =Le™=, 1'equa-
zione (4) si cangia nella seguente
[ )\ x d rd‘lJ
(20) E[Y] + O+ ey = we® o)+ (h+ 1) e =0,
e considereremo il problema al contorno, sul semiasse reale posi-
tivo aperto, Jella determinazione di una soluzione Y(x) dell’equa-
zione

(21) ElY] + fla)=
verificante le condizioni
(22) lim @)(@) =0, lim 4#)= lim y(z)=0.
2 —s0 X — X X —s> 00
Posto

.. - [ds
Gx, %) :v(;):[g, per x <%,

= () , per a1,
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si ha il teorema: )

I'. Se la (21) possiede una soluzione Y(x) verificante le condi-
zioni (22) Uintegrale tmproprio

[ Hre,
|

deve, per ogni x positivo, risultare convergente, ¢ si ha

a9}

~

(23) - Ha) = 6les B,

0

. Assunta un’arbitraria funzione f(x), continua per ogni x posi-
tivo, tale che il rapporto f)

x

(24) P(x)Em)—e,;,
riesca sommabile nell’intervallo (0, oc), si vede subito che tutte le
soluzioni della (21) hanno la derivata prima infinitesima all’infi-
nito, e, sfruttando la diseguaglianza v(x) — 1/xe™, che:

IT. Comungue si assuma una funzione f(x), continua per ogni x
positivo, per la quale il rapporto (24) riesce sommabile nell’ inter-
vallo (0, o<), esiste sempre una ed una sola soluzione della (21),
fornita dalla (23), verificante le condizioni

(25) , limo(wn]/(x}) =0, lim {(x)=0.

In base alle condizioni nel punto zero la Y(x) riesce, per x—0,
definitivamente maggiorata, in modulo, dalla funzione &|logx|,
con ¢ quantith -positiva arbitraria. Se f(x) & continua nel punto

zero si ha, di pil, lim Y(x) (per x—0) = /fv(x)f(x)dx. Ne segue:
. ; §

III. Per le funzioni ¢n(x) = e *’Ly(x)/(n!) di LAGUERRE Sussi-
stono le equazioni integrali

() = b+ 1), D),
.0
con
&
Iz, §) = v(E)e™e?,  per x <,
— ()™, per x >E.
Per ogni «x positivo &

i, §) = v(x)e”-¢", per § < w,

<e”-—1

E?e‘c"..’

.
per § > x,
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fend o o0
freae, bHd: = vilw)e /8 di + ew"v?(i)eidi,
0 0 »

Nad 00
lim }1"(345 5:[0 o
x—0.
0
oo 1 o0
CdE 2
e, 3 = e < 2
F2* T
0 v

Pertanto il nucleo 1'(x, ) verifica, nel primo guadrante del
piano {x, Z), tutte le ipotesi della teorvia classica delle equazioni
“integrali aventi per campo d’integrazione il semiasse positivo (°).

- (*) Poiche tutti i nuclei iterati I'y(x, &) (v=>1) riescono continui in tutto
il primo quadrante chiuso del piano (x,E) e inoltre, in base alla (25),
I' (. x) limitato, le formole sommatorie

) x)o;{E) . c
Ty (x, E) Z @: i}lfﬁ (v=1. 2, <)y

sono valevoli in ogni punto del detto quadrante, le serie al secondo
membro risultando assolutamente ed uniformemente convergenti’ nello
stesso quadrante. Si ha in particolare

[e®)

A 1 - C g .
Iy (0, 0) :;;‘o(k:’ﬁa; =1,2.).

Sia y(x) una funzione dotata, per ogni a positivo, di derivata nrima
assolutamente continua in ogni intervallo finito del semiasse positivo aperto.
Tale riuseira 7(x) == e—*2y(x) e supposto che questa verifichi le (22), cioe
che

" lim (my - aﬁu):(” lim (ye—=f2) = lim (y'e—/2) =0,

P a X — 00 & =+ 00
sioavra

) = — [, HELHE1E,
o
e guindi.
hy +2 . "
- ) / %, E)[ Y — @) — By |k
. i ,

Da qui segue, di nuovo, la completezza del sistema delle funzioni di
LaGrerre g,(x) ¢ che se, con le (%), riesce L{ylsaxy” + y — (x -+ 2y/+
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Per ogni soluzione Iix) della (4) che verifichi le condizioni (5)
e (6), posto o(x) = Lizle==%, %+ 1=y, si trova per o(x) I’equazione
integrale :

(27) | #(@) = w1, Yol
)
e le definitive limitazioni, per x — oo,
(28) Lol(@) | < Ma,
o per x — 0
o) < M {log |

Dalle (27) e (28) segue subito, col procedimento del n.° 2, che,
per x— oo, si ha definitivamente

l9(@) [ < (1 + 61u| Mzr—1,

e quindi, sucecessivamente, per ogni numero naturale v,

o2)| < M.

Sussiste dunque la sommabilita della norma di «(x) nell’ inter-
vallo (0, oc) e pertanto essa non pud differire, che per un fattore
costante, da una delle 9 {x), il cui sistema & completo nell’inter-

di norma sommabile sul semiasse positivo, la y(x) & sviluppabile in serie
di FouRrIER nel sistema [¢,], la serie risultando assolutamente ed unifor-
memente convergente in tutto il semiasse positivo chiuso. Nelle dette
ipotesi, poiché le ¢, sono continue nel punto zero ed infinitesime all’in-
finito, dovra, dunque, y(x) aver¢ un limite determinato e finito per x—0
ed essere infinitesima per x-—%oo. Dalla (**) si ricava efféttivamente
che y e y' sono infinitesime all’infinito, del prim’ordine, almeno, rispetto
a 1/x e che, per x—0, y ha un limite determinato e finito e y', se diviene
infinita, lo diviene d’ordine non superiore a 1/2, rispetto a 1/x. Vice-
versa, se y & continua per ogni >0, infinitesima per a-—co, con xy’
per x—0, e L[y] di norma sommabile nell’intervallo (0, e), la %(x) veri-
fica le (22) del testo e si ha dunque [cfr. W. MYLLER-LEBEDEFF, loc. cit. ()]
il teorema: Una funzione y continua per ogni x>0, infinitesima per x — oo,
con xy' per x—0, per la quale y' é assolutamente conlinua in ogni inter-
vallo finito del semiasse positivo aperto e Liy] di norma sommabile nell’in-
tervallo (0, o), é sviluppabile in serie di FOURIER nel sistema [¢,] delle
funzioni di Laguerre, la serie risultando assolutamente ed uniformemente
convergente in tutto il semiasse positivo chiuso. L’inclusione del punto
zero conferisce a questo teorema una certa utilita. ‘
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vallo (0, oo) per 1'approssimazione lineare, in media, delle fun-
zioni ivi di morma sommabile (7).

(") Un’ulteriore caratterizzazione dei polinomi di LAGUERRE & fornita
dal teorema: Per ogni soluzione L(x) dell’equazione dlffmenzzale (4). per
A =n. esistono determinati e finili entrambi i limiti

lim (xL'(x)), lim (x®+'e—*L(x)),

x~—r0 X — 00
e condizione necessaria e sufficiente affinché la soluzione sia il polinomio
di TIAGUERRE, moltiplicato per una costante, é che uno di quei limiti sia
lo zero.

Ne segue facilmente che: Tuite le soluzioni dell’ equazione integrale
#(@) = — Io(@)e™ +- (n-+ 1) [T, D,
0

sommabili in ogni intervallo finito del semiasse - positivo aperto, per le
quali Uintegrale al secondo membro riesce convergente, per ogni x posi-

tivo, sono date dalle soluzioni dell’equaawne differenziale delle funzioni
di TAGUERRE:

(%) + @ —2) §

per le quali lim (xv') (per x —0)=1. Per 1-=0 sono dunque date dalle fun-
zioni di Liacuerre moltiplicate per una costante arbitraria [cfr. la nota (3)].

+ w.p =0,



