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PICCOLE NOTE

I polinomi di Hermite e di Laguerre come autosoluzioni (*).
Nota di Mauro Picone (a Borna).

Sunto. - Per due ben note equazioni differenziali ordinarie, lineari, omo- 
genre, del second’ordine, contenenti linearmente un parametro, si sta­
bilisce che certi comportamenti — che si reputano non ancora stati 
considerati — negli intorni dei punti singolari per esse, prescritti alle 
soluzioni, caratterizzano, con determinati spettri per il parametro, i 
polinomi, rispettivamente, di Hermite e di Laguerre, come autoso­
luzioni.

Per il polinomio di Hermite di grado n :

cP
HAx) = (— 1)” e®2 n e-®2, ” ' ' dxn '

sussiste 1’ eguaglianza
Hn" — 2xH,' -+- 2nHn = 0,

e nel preziosissimo libro di Courant e Hilbert (*). a pag. 283. 
trovasi dimostrato che se si ricercano valori reali del parametro a 
nell’ equazione differenziale del second’ ordine :

(1) H" — 2xH' -4- — 0,

per ciascuno dei quali esiste una soluzione, non identicamente 
nulla, di tale equazione che, per |au~*oo, verifichi definitiva­
mente una limitazione del tipo

(2) \H(x)\<M\x\*,

con M e a costanti positive, si trova che essi sono tutti e soli i 
numeri interi pari non negativi 2n e che, per ognuno di essi, le

(*) Lavoro eseguito nell’istituto per le Applicazioni del Calcolo del 
Consiglio Nazionale delle Ricerche.

(‘) R. Courant und D. Hilbert, Methoden der Mathematischen Phisik [. 
[Zweite Auflage, Springer, Berlin (1931)].



206 BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA

soluzioni della (1) godenti di detta proprietà sono tutte date dal 
polinomio H}l(x) moltiplicato per una costante arbitraria. Il poli­
nomio Hn(x) può perciò considerarsi come autosoluzione dell’equa­
zione differenziale (1) con la condizione (2) alla frontiera del campo 
d’esistenza delle soluzioni della (1), che è l’intero asse reale.

Presentatamisi in una recente ricerca la necessità di caratte­
rizzare le autosoluzioni della (1), anche per valori di X non neces­
sariamente reali, dotate di una crescenza all’ infinito più forte di 
quella consentita dalla limitazione (2). sono pervenuto al seguente 
teorema che, reputandolo nuovo, mi sembra utile pubblicare.

Teorema H. — Tutti e soli i valori di X (reali o complessi) 
nell' equazione (1) per ciascuno dei quali esiste una, soluzione H(x) 
— diversa dallo zero — della (1) stessa, che, per |x| — oo. verifichi 
definitivamente una limitazione del tipo

(3) Il(#) I < Me^l2 ■ x\a,

con M e x costanti positive, sono i numeri interi pari non nega­
tivi 2n e per ognuno di questi le soluzioni della (1) godenti di detta 
proprietà sono tutte date dal polinomio Hn(x) di Hermite moltipli­
cato per una costante arbitraria.

Scopo della Nota presente è di esporre la dimostrazione di 
questo teorema e di indicare rapidamente quella analoga del se­
guente :

Teorema L. — Tutti e soli i valori di X (reali o complessi) 
nelT equazione differenziale

li) xL" u (1 — x)L' -+- XJD ~ 0/ (x Z> 0),

considerata nel semiasse reale positivo (aperto), per ciascuno dei 
quali esiste una soluzione L(x) — diversa dallo zero — dell'equa­
zione, che, per x —- oc, verifichi definitivamente una limitazione del 
tipo
(5) \L[x)\ < Me*l2x

con M e a costanti positive e, per x —* 0, la relazione di limite

(6) lim (xL'(x)) = 0,
a?—► 0

sono i numeri interi non negativi n, e per ognuno di questi le 
soluzioni della (4) godenti di dette proprietà sono tutte date dal 
polinomio di Laguerre

dn
= dxn(xne^x),

moltiplicato per una costante arbitraria.
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1. Un problema al contorno sull’asse reale e la relativa 
funzione di Green. — Con la sostituzione

(7)

la (1) si cangia nella seguente

« 2)^=o,

e porremo

pH = e-æ2,

TT lr\
?» - e-^P- =

Il sistema [$„(#)]• (n = 0, 1,...), delle funzioni di Hermite, è orto­
gonale e normale sull’ asse reale e, notoriamente, ivi completo per 
l’approssimazione lineare, in media, delle funzioni (reali o com­
plesse) di norma sommabile sul detto asse.

Per le funzioni sussistono le eguaglianze

(8J . + 2(« + l)e*fn = 0, (« = 0,1,...),

e sono verificate le condizioni all’ infinito

(9) lim <p(æ) — lim q
|oj| —*• oo |a?| —*-oo A ’

ed è immediato che la funzione di Green, relativa a queste con­
dizioni, per l’espressione differenziale

che compare al primo membro delle (8) e (8M) riesce così definita:

'W>(ir)',y(^) 
G(x, g) = ■ , per sc<?

Vu —

= vi“’ P“

con
æ -J-oo

u(x) = [e-s2ds, v(x) =f-3*as.
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Si ha
lim u(x) — lim v(x) =

a? —*-4-oc Lv—-"—oo
V u(x) -+- v[x) = V ir,

(10') «(•<■•) < 2L«jeæ2 ' per M < 0,

(10") < 2xexi ' per æ > 0.

Sia f(x) un’assegnata funzione continua (reale o complessa) e 
consideriamo il problema, al contorno sull’asse reale, della, deter­
minazione di una soluzione }(^) dell’equazione differenziale

d / d'IA
(in + + ».

verificante le condizioni (9). Se a, b e \ sono tre numeri reali, ed 
è a<5 <J^, dalla (11) si trae

v(^\
<p(£) — —e62[ì7(6)y(&) — -------?= ea'2[u(a)Y(a)—l(a)w'(a)] -+-

y-jT ' y n
b

-t- J G(x, l)f(x)dx.

Ora, in virtù delle (10), si ha, per b > 0,

eM I r(0)y(6) - |(6)r'(&) | < | | + 11(6) :,

e, per a < 0,

e“21 u{a)i>'{a) — ^(a)u'(a) | < | | -+- | |(a) |,

e pertanto il teorema :
I. Se la (11 ) possiede una soluzione l(x) verificante le condizioni (9), 

l’integrale improprio
4-00

(12) fax,

deve, per ogni x reale, risultare convergente, 6 s/ ha

(13) 'I(ìc) = $)f(;)d;.

AW j)uò dunque esistere più di una soluzione della (11) verifi­
cante le condizioni (9).
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(14) 

Assumiamo ora, comunque, una funzione continua f(x), tale che 
il rapporto 

IA«)I
A (1 -+-1 x|)eæ2’ '

riesca sommabile sull’asse reale. Ogni soluzione ^(#) della (11) 
verifica allora la seconda delle condizioni (9), si ha cioè sempre 
lini (’//a?) (per | æ ! ~ oo) = 0. Assegnato invero, arbitrariamente, un 

numero positivo s, ne esiste un altro c(s), tale da risultare Jp(x)dx<A9 

e dalla (11), per x >> e(e), si trae

e&'Yix) 1 <C |e^'(c)| -f- )p($)(t -+-f)eyd;,

! y(æ) 1 < 
X

- leCV(c)l .
XO& X

donde lim" | <]//æ I (Per æoc) <; s (2). D’altra parte l’integrale

(13) +(*) = JG(®, S)f(5)Ä - E»m#,,

riesce allora sempre, per ogni x reale, certo convergente, anzi 
addirittura ad integrando sommabile sull’asse reale e se pren­

diamo un c(s) positivo talmente grande che, essendo Jp(x)dx < s, 

risulti anche, per sc^>c(e), (l+*<2) segue dalla (18), in virtù 
della (10"),

e quindi lim" | ^(æ) \ (per x —* oc) < 2s. Si ha dunque :
II. Comunque si assuma una funzione continua f(x), per la quale 

il rapporto (14) riesce sommabile sull' asse reale, esìste sempre una 
ed una sola soluzione della (11), fornita dalla (13), infinitesima per 
|x|-oc.

(2) Secondo le notazioni delle mie Lezioni di Analisi infinitesimale 
[« Circolo Matematico di Catania », Catania (1923)|, con lim' e lini" indico' 
rispettivamente, il minimo ed il massimo limite.
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Se ora si riflette che Hn/pn, verifica le ipotesi testé con­
template per la f(x) e la infinitesima per |æ|—~oc, l’equa­
zione differenziale (8M), si ha che :

III. Per la funzione ^n(x) sussiste l’equazione integrale

W = 2(n 4- 1)JGfo î)e%(Ç)Æ,

e quindi, per la funzione di Hermite <pn(x), la seguente (di E. Neumann)
-Too

?„(«) — 2(n 4-1 )Jr(x, (s),

con

pera;<t
V 7T 

u®v(x)
=----- , per Lv >

*
a? 4-00

Z7(x) — e^2je-^ds, V(ar) — e^e-^ds.

--OO X
Si ha

0 < U(x) < V^e®2/'2, 0 < ¥(«) < V^s^/2, U(x) 4- V(x) — V^/2,

(10') per x < °’

(10") per a: > Ö.

Il nucleo r($c, $), reale e simmetrico, del quale dunque i nu­
meri 2(n-4-l) (n = O,l,...) sono autovalori, con le corrispondenti 
autosoluzioni normali, %(#), verifica, nel piano intero (æ, £), tutte le 
ipotesi dei nuclei per i quali è valida la teoria Hilbert-Schmidt 
delle equazioni integrali lineari di seconda specie, aventi per campo 

^d’integrazione l’intero asse reale. Oà tutte le necessarie proprietà 
qualitative si ha, invero, per ogn/n reale, definitivamente, per 

I Ç I —* oc, /

r!(yK4^’

(3) Cfr. A. Kneser, Die Integralgleichungen und ihre Anwendung in 
der mathematischen Physik. [« Vieweg und Sohn », Braunschweig (1911)], 
p. 242.



PICCOLE NOTE 211

e, per esempio, per x >> 0

laddove

1
4:vx2ex2

se ne deduce che, per | x | —* co, riesce definitivamente 

(15) 

e sussiste dunque anche la sommabilità, su tutto il piano (#, £), del 
quadrato del nucleo r(sc, £) (4).

(4) Le conseguenze che permette subito di trarre, nel caso presente, 
la consentita applicabilità della teoria classica delle equazioni integrali 
lineari non sono trascurabili, specialmente per la circostanza che, detto 
rjsc, g) il primo nucleo iterato, r/œ, x) riesce, in virtù della (15) del testo, 
limitato sull’asse reale. 1STe segue, in primo luogo, che nelle eleganti for­
inole sommatorie

2t+»r,(a!,6)=2^Ä

ove rv(x, è) designa il nucleo iterato, le serie al secondo membro 
convergono assolutamente ed uniformemente in tutto il piano. Si ha, in 
particolare,

Tt21+vrv(0, 0)=V -~3- l~A'~ 11------ ------- (v — 1 2

Sia, in secondo luogo, y(x) una funzione dotata ovunque di derivata 
prima, assolutamente continua in ogni intervallo finito, tale riuscirà 
tj(sc) — y(x)e—æ2/2, e supposto che tj(cc) verifichi le (9), cioè che

(*) lim (ye—æ2/2) — lim f — e~-æ2/2 j — 0,
|a?| —\x\—*-oo\æ /

si avrà
4-00

c quindi, per essere e—^2I^E\y]\~y" — (1 -h x2)y,
4-oo

(**) y(x) =j r(», ?)!.(! ■+- êâMê) -
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2. Dimostrazione del teorema H. — Sia H(x) una soluzione 
della (1) verificante la (3). Sussiste allora la (8) per la tyx} data 
dalla (7), laddove, poiché per * oo, è definitivamente

I ^(x) |’ < Me~x2l21 x |%
si avrà lim ^p(æ)'(per \x\—<^oo)-= 0 e la sommabilità sull’asse reale 
del rapporto

,l(æ)e*2 j _ I ty(x) I .
\ ì -+-1 x I) ex2 1 H- I x I ’

Segue dal teorema II che

(16) K») = (X + 2

riuscendo l’integrando al secondo membro, per ogni valore reale di x, 
sommabile sull’asse reale, e pertanto, posto = = »(o;),

(17) ®(æ) — ^^F(cr, £)<&(£)d;,

con la stessa proprietà per l’integrando al secondo membro, aven­
dosi, definitivamente per | x \ — oc,

(18) J y(x) I < M\ x |a.

Per dimostrare, dunque, il teorema H, basterà, In base al teo­
rema III, far vedere che ogni funzione ©(#) verificante le (17) e (18) 

da qui, di nuovo, segue, con ben note considerazioni, la completezza del 
sistema delle funzioni di Hermite cpn(x) e segue anche che, se, con le (*), 
riesce y"— (1 -t-x2)y di norma sommabile sull’asse reale, la y(x) è svi­
luppabile in sorie di Fourier nel sistema [>*(#)], la serie risultando 
assolutamente ed uniformemente convergente sull’intero asse reale. Helle 
indicate ipotesi, poiché le cpM(sc) sono tutte infinitesime all’infinito, tale 
dovrà dunque risultare la y{x), e dalla (**) si ricava effettivamente che 
y(x) è infinitesima all’infinito, almeno dell’ordine 3/2 rispetto a l/|a?l, e si 
ricava altresì che tale è anche y'(x), almeno dell’ ordine 1/2. Viceversa ,. 
se y(x) è infinitèsima all’infinito e y" — (1-b x2)y = e—æ2I^E[r[\ è di norma 
sommabile sull’asse reale, la y(x) verifica le (9) del testo e si ha dunque 
[Cfr. Wera Myller-Tjebedeff, Die Theorie der Integralgleichungen in 
Anwendung auf einige Reihenentwicklungen, « Math. Ann. », 64 Band, 1907] 
il teorema: Ogni funzione y(x) infinitesima per | x | —* co, per la quale y'(x) 
è assolatamente continua in ogni intervallo finito e y" — (14- x2)y di 
norma sommabile sull’asse reale, è sviluppabile in serie di Fourier nel 
sistema [?n(x)], delle funzioni di Hermite, la serie risultando assoluta- 
mente ed uniformemente convergente sull’intero asse reale.
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riesce di norma sommabile sull’ asse reale, poiché, essendo il si­
stema [?J completo su tale asse, la (17) non può avere ivi altra 
autosoluzione di norma sommabile che non sia una delle yn{x} 
moltiplicata per una costante (5). Ora noi dimostreremo, di più, che

(5) Ai fini della teoria generale delle equazioni integrali è certo istrut­
tivo rilevare l’esempio fornito dalla (17), la quale, se si toglie alle sue 
autosoluzioni la condizione della sommabilità della norma sull’asse reale, 
oltre a quelle del sistema completo [cpn]? possiede infinite altre autosoluzioni. 
È facile infatti verificare che, per X — 2a, è autosoluzione della (16) non 
soltanto la soluzione <pn(sc) dell’ equazione differenziale (8) per X — 2n, che 
dà luogo all’autosoluzione <pn(œ) della (16) già considerata, ma lo è anche 
una qualsivoglia soluzione H(n) della stessa equazione differenziale. Detto, 
invero, (—cM, cn) un intorno dell’origine che contenga tutti gli zeri del 
polinomio Hn(x), una soluzione ch della (8) per X — 2-r, ha, per \x\^>cnr 
l’espressione

f e«2

(*) 4- - a(«o)<M«) +

ove Xq è una costante arbitraria >> cn se x>cn e < — cn se æ<C-—cw, 
e a(xo), ö(Mo) sono determinate funzioni di x6, indipendenti da x. Per 
potere affermare che ch è autosoluzione della (16) per X — 2n, basterà ve­
rificare, in base al teor. II, che essa è infinitesima all’infinito e che 
14>(æ) |/(1 4- I x I) riesce sommabile sull’asse reale. Ora, effettivamente, se 
prendiamo cn talmente grande che l’intorno (—cn) contenga anche 
gli zeri del polinomio

2x*Hn — (n 4- 1 )Hn — xHn',
si ha, per | x | > cw,

, Jï 2*””’ '> n.,1“'. =Wà ■

donde la detta verifica e un’ulteriore caratterizzazione dei polinomi di 
Hermite espressa dal teorema: Per ogni soluzione H(x) dell’equazione 
differenziale (1), per X — 2n, esistono, determinati e finiti, entrambi i limiti 

lim Çe-&xn+lH(x)), lim (e~æ2xn^1 H(x)),
æ —> —oo æ 4-00

e condizione necessaria e sufficiente affinchè la soluzione sia il polinomio di 
Hermite moltiplicato per una costante è che uno di quei limiti sia lo zero..

Notiamo anche che: Tutte le soluzioni dell’equazione integrale
9 4-00

-t-1)/*r(as,

sommabili in ogni intervallo finito, per le quali l’integrale al seconda 
membro riesce convergente, per ogni x reale, sono date da quelle del­
l’equazione differenziale delle funzioni di Hermite’.

cp" 4- (1 — «2)P 4.. àP — 0.



214 BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA

ogni soluzione della (17) verificante la (18), riesce, per | |  
infinitesima d’ordine comunque elevato rispetto a l/\x\. Detto 
invero, c un tal numero positivo che, per æ>c, risulti 
dalla (17) si trae 

  ll9i Ms!’,s’1* "2^5,,/°'"-'^*
+ —rr ~ I (..no

'2x*~* J e’’/2

Ma
X + °°

/ 1 r &2/2 \ / eæ2/2 \
lim I——■—e’C<fé) = lim (----- -^~d'î\== 1,æ—j-Aæ 6 ' J / æ —+oo\a:’-7 e”/2 /

e pertanto, segue dalla (19) che, per a:—■•+ool riesce definitiva- 
mente

I cp(æ) I < (1 -+- 2 ! jx I

e, dalla ripetuta successiva applicazione di questa considerazione, 
che, per ogni numero naturale v, esiste un numero positivo Mv tale 
che per x —■*- -+- oo riesce definitivamente

! <p(æ) I < Mvxa~2v,

ciò che dimostra quanto si voleva.

3. Dimostrazione del teorema L. — Posto ty = Le l’equa­
zione (4) si cangia nella seguente

(20) _ E\$] -+- (X 4- =s ~ (xex ^) 4- (X 1)éT| = 0,

e considereremo il problema al contorno, sul semiasse reale posi­
tivo aperto, della determinazione di una soluzione ^(n) dell’equa­
zione
(21) Æ[+] + fl*) = 0, 
verificante le condizioni

(22) lim (x'Y(x)) = 0, lim |(&) = lim |'(æ) = 0.
x—*0 æ—* æ—* oo

Posto

cds■ G(a;, ?) = t^)=^ —, perægf,

r .
= r(x) , per Lv >
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si ha il teorema :
I'. Se la (21) possiede una soluzione -}(x) verificante le condi­

zioni (22) l’integrale improprio

\G(x, ;)fi;)d-,
0

deve, per ogni x positivo, risultare convergente, e si ha

(23) ÿ(®)=/G(®. WMt

0
. Assunta un’ arbitraria funzione f(x), continua per ogni x posi­

tivo, tale che il rapporto

(24)

riesca sommabile nell’intervallo (0, oc), si vede subito che tutte le 
soluzioni della (21) hanno la derivata prima infinitesima all’infi­
nito, e, sfruttando la diseguaglianza v(x) < l/xeT, che :

II\ Comunque si assuma una funzione f(x), continua per ogni x 
positivo, per la quale il rapporto (24) riesce sommabile nell’inter­
vallo (0, oc), esiste sempre una ed una sola soluzione della (21), 
fornita dalla (23), verificante le condizioni
(25) lim (a^'(n)) — 0, lim <}(#) = 0.

Lv —► 0 X •—- oò
In base alle condizioni nel punto zero la <p(œ) riesce, per #-*0, 

definitivamente maggiorata, in modulo, dalla funzione s | log x |, 
con e quantità, positiva arbitraria. Se f(x) è continua nel punto

zero si ha, di più, lim ^(æ) (per x—*0) =lv(x)f(x)dx. Ne segue:
0

III'. Per le funzioni tpn(x) — e~x/2Ln(x)/(n !) di Laguerre sussi■ 
stono le equazioni integrali

<?„(&) = (W -+- £)?„(')d',
. 0

con
r(x, Ç) == v(tyexl2e^2, per x ç,

= v(x)e^2e^2, per æ 2>

Per ogni x positivo è
V\x, ì} = v\x]ex • e\ per ç < x,

x 1< 6 . —c, - per ç > x, 
Ve*
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Pertanto il nucleo E) verifica, nel primo quadrante del 
piano (x, ;), tutte le ipotesi della teoria classica delle equazioni 

'integrali aventi per campo d’integrazione il semiasse positivo (6).

' (G) Poiché tutti i nuclei iterati I\ (jc, è) (v 1) riescono continui in tutto 
il primo quadrante chiuso del piano (x, g) e inoltre, in base alla (25), 
r4(æ. x) limitato, le formole sommatorie

(»=1.2,...),(fc-4-1)1 t-v ' ’k-0v 7

sono valevoli in ogni punto del detto quadrante, le serie al secondo 
membro risultando assolutamente ed uniformemente convergenti* nello 
stesso quadrante. Si ha in particolare

oo ■ •

1\ (0, 0) = V - ---- — (v = 1, 2,...).

Sia y(x) una funzione dotata, per ogni x positivo, di derivata prima 
assolutamente continua in ogni intervallo finito del semiasse positivo aperto. 
Tale riuscirà t](x) = e~æ^y(x) e supposto che questa verifichi le (22), cioè 
che

Km Ixy' — — 0, Km (t/e-æ/2) = Km (y’e~æ/2) = 0,
x -—► 0 \ / x -—" oo x -—- oo

si avrà

Tt(x) =
0

e quindi.

y(x)=l^(g) _ ^'(g) —
ò

Da qui segue, di nuovo, la completezza del sistema delle funzioni di 
Dagcekre q»n(x) e che se, con le (*), riesco L[y]~xy" yr— (æ + 2)t//4
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Per ogni soluzione L(x) della (4) che verifichi le condizioni (5) 
e (6), posto tb(x) = X-F-l = p,. si trova per ©(#) l’equazione
integrale

(27) y(x) = pjr(x, ;)©(;)d;,

0

e le definitive limitazioni, per x

(•28) I cp(5c) I <

e per x — 0

! ©(#) I < I log sc I.

Dalle (27) e (28) segue subito, col procedimento del n.° 2, che, 
per x —» oo, si ha definitivamente

I 4>(ìt) I < (1 -4- 6'| jx I

e quindi, successivamente, per ogni numero naturale v,

I ©(se) I < Mvx*—''.

Sussiste dunque la sommabilità della norma di ©(se) nell’inter­
vallo (0, oc) e pertanto essa non può differire, che per un fattore 
costante, da una delle <pn(sc), il cui sistema è completo nell’inter­

di norma sommabile sul semiasse positivo, la y(x) è sviluppabile in serie 
di Fourier nel sistema [q>M], serie risultando assolutamente ed unifor­
memente convergente in tutto il semiasse positivo chiuso. Nelle dette 
ipotesi, poiché le cpw sono continue nel punto zero ed infinitesime all’in­
finito, dovrà, dunque, y(x} avere un limite determinato e finito per n —O 
ed essere infinitesima per x —\oo. Dalla (**) si ricava effettivamente 
che y e y' sono infinitesime all’infinito, del prim’ordine, almeno, rispetto 
a 1/x e che, per sv —O, y ha un limite determinato e finito e «/', se diviene 
infinita, lo diviene d’ordine non superiore a 1/2, rispetto a 1/x. Vice­
versa, se y è continua per ogni sc>0, infinitesima per x~-►», con xy' 
per x—*0, e L[y] di norma sommabile nell’intervallo (0, co), la 7](x) veri­
fica le (22) del testo e si ha dunque [cfr. W. Myller-Lebedeff, loc. cit. (4)] 
il teorema : Una funzione y continua per ogni x 0, infinitesima per x — co, 
con xy' per x —O, per la quale y' è assolutamente continua in ogni inter­
vallo finito del semiasse positivo aperto e L[y] di norma sommabile nell’in­
tervallo (0, co), è sviluppabile in serie di Fourier nel sistema [ç>w] delle 
funzioni di Laguerre, la serie risultando assolutamente ed uniformemente 
convergente in tutto il semiasse positivo chiuso. L’inclusione del punto 
zero conferisce a questo teorema una certa utilità.
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vallo (0, oe) per F approssimazione lineare, in media, delle fun­
zioni ivi di norma sommabile (7).

(7) Un’ulteriore caratterizzazione dei polinomi di Laguerre è fornita 
dal teorema : Per ogni soluzione L(x) dell’equazione differenziale (4), per 
X — n. esistono determinati e finiti entrambi i limiti

lim (a?L'(æ)), lim (xn+ìe~xL(x)), 
LV-—X—► oo

e condizione necessaria e Sufficiente affinchè la soluzione sia il polinomio 
di LAGUERRE, moltiplicato per una costante, è che uno di quei limiti sia 
lo zero.

Ne segue facilmente che: Tutte le soluzioni dell’equazione integrale

ç(æ) = — lv(x)eœ/2 -h (n
0

sommabili in ogni intervallo finito del semiasse positivo aperto, per le 
quali l’integrale al secondo membro riesce convergente, per ogni x posi- 
tivoy sono date dalle soluzioni dell’equazione differenziale delle funzioni 
di Laguerre:

(#<?')' 4- (2 — x) j 4- nq = 0,

per le quali lini (x?') (per x—*0) —1. Per 1 — 0 sono dunque date dalle fun- 
zioni di Laguerre moltiplicate per una costante arbitraria [cfr. la nota (5)]t


