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144 BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA

Sulla somma di alcune serie.
Nota di Letterio Toscano (a Messina).

Sunto. - L’Autore introduce una nuova classe di polinomi e con essi esprime 
certi operatori differenziali e la somma di alcune serie.

1. In due miei precedenti lavori f1) mi sono occupato fra altro 
della somma delle serie integro-geometriche, cioè delle serie della 
forma

p(0) -4- p( 1) • x -4- p(2) • x2 -+-... -F p(n) • xn -4- ...

con ' I x I < 1 e p(n) polinomio di grado r.
Ho trovato

n=Qo s=?r
2 p(n). xn = fi—=« 2
n=0 XJ 8=0

(*.) Ij. Toscano, Sulla somma di alcune serie numeriche (« The Tòhoku 
.Mathematical Journal », voi. 38, 1933) ; Una trasformazione di Pincherle e 
somma di alcune serie numeriche (« Anais da Faculdade de Cièncias do 
l’orto », tomo XXII).
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con
M,.s~ Lr, r-s — ( s y Lr, r—s—1 -+- ... ■+■ (— j L, 0

(s s= 0, 1,..., r) 
e Trv = &vp( 0);

ed in particolare, nel caso p(n) == nr, x
n=oo s=r

S«r^ = (ÌT=WiZ^-*, 
n=l \ 7 s=l

dove i coefficienti At.s risultano definiti dalle posizioni

4rl=±l, Arr = 1

-4rs = Sj4r—1, s -+- (r — s -+- l)j4r— 1, 3—1.

In altro mio lavoro (x) ho fatto inoltre vedere che questi coef­
ficienti, oltre che per la somma delle precedenti serie, si prestano 
con successo per il calcolo dei numeri di Bernoulli e dei coeffi­
cienti dello sviluppo in serie di tgx; e qui in fina mi propongo di 
mostrare come intervengono pure in un certo sviluppo della iterata 
di xD (con D simbolo di derivazione rispetto a x), come si possono 
pure generalizzare per lo sviluppo di æ~r(“^1)(ænD)r, (Dxuyx~,'{u~ì\ 
x~r(U^ì}(Dxny, (xuDyx~r{u~i}, e in conseguenza come tali coefficienti 
semplici e generalizzati sono legati al calcolo di particolari serie, 
dal cui confronto ne trarrò conseguenze per gli operatori con­
siderati.

2. I numeri A,.t si possono generalizzare in vari modi e qui li 
generalizzo con i polinomi A^, B^s intero qualsiasi) definiti 
dalle posizioni «

i Ah* = (- - 1) - l][2(u — 1) — 1]... [(»- — IX« - 1) — 1]
(1) Ja'“* — [(w — 1) 4-1][2(« — 1) + 1] ... [(r — 1 )(u — 1) 4- 1]

. j Ars^ — [(r — 1 )u — s 4- s-1 — [(r — — 1) — s}A{r-1, s

\ua.rs=:0 per s < 1 e s > r

i Bri’ — [(« — 1) 4-1][2(w - 1) 4- 1] ... [(r — 1X« — 1) 4- 1]

— [(r - IX—« 4- 2) - s 4- «-I h- [(r -1X« -1) + «]Ä, •
ljBrs^ = 0 per 8 < 1 e s> r.

(‘) L. Toscano, Sui coefficienti della tangente e sui numeri di Bernoulli 
(« Boll. Unione Matem. ItMana^ anno"XV, 1936).
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Per tali polinomi si riducono ai numeri semplici

-Ars — , JDra — -Ay- 1,s,

e per u—2 assumono i valori notevoli

/■<.*'
^4ys \. per 8 

\ == r ! ^ == -,

Con tali polinomi Ars\ B>rsè possibile assegnare nuovi e notevoli 
sviluppi per gli operatori x~r{u—y\xuD)v, (Dx'y\c~r<M—n? x—rlu~1\DxHY, 
(xuD)rx~riU—ì\ 1 .

Infatti valgono le relazioni (*)

(3) ' r ! = 2 ^rs^'-^D' x^1
s=l
s=r

(4) ri (Dxnyx—r(u-ì) = 2
s=l

(5) ri x~*u-'\Dx'y- — 2 B<r+1,3+ixsjD’«’-'
3=0

(6) . r!.(sc"P)’-a;—«“-» = JBr+i,s+ia;’-sn’a;s.
8=0

Altrettante se ne possono dedurre per le formule di permutabilità
— (D’x’KD'x'l

. (7) (xlDyxjlPì — (xW^xW)
(jD’x'Xa^ZX) =

ed altre ancora per le formule di trasformazione

(Dxt‘Yx-’^-l> = D~’^-v(Duxy
x-riu~'>(xuDy — (xD“)'-JD-’-<u-1>

■8t g.—r(M-l)(£)a.wjP _

(asMD)’a;-’(“-1) = D-’(!t-1,(ä:D“)r.
i’or u — 1 e = 2 le relazioni precedenti assumono forma par­

ticolare notevole.
Pertanto i coefficienti semplici Ars e generalizzati Ars\ Bw inter­

vengono in certi sviluppi di (xD)r, (Dxy\'.x~r(u-1)(xnD)ri, (Dxu)rx~r{u~~1\

(') Ometto di proposito la dimostrazione delle relazioni contenute in 
questo para grato, in quanto intendo riprenderle con maggiore generalità 
in un prossimo lavoro su gli operatori lineari associati.
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4T”r(u (xuDfx r(" ° ; e nel paragrafo seguente vedremo
come si collegano al calcolo della somma di alcune serie.

Ü. Siano
n—oo 

/■(•»)== 2 v1’ 
H—0

ì n—oo
?(«)'= Zj kîæ"’ 

n=0
due funzioni analitiche a raggio di convergenza diverso da zero: 
vale la trasformazione di Pincherle (l)

fc n=oo v=oo^v

(9) Zu a>^"xU — Zj "V?9
-t—0 . V—0

in cui la serie a secondo membro converge se
\x\ \u\

\x — v\ < ! 1 —u I ’

denotando con u e v i punti singolari di f(x) e y(x).
Per a„ — p(n) si ha

n=oo v—r

Zj ■ " Zj ~/t
M=0 V—0 * \

E nei casi , .
p(n) = n(M—br)

p(n)~, (n +-
== (n -+- u)(w—:b

2>(n) = (fi — U 4- 1)(—«♦+-!, r)

si ricavano i risultati particolari

/ , n(u~ 1»r)Ä:„ajw =■ --------- î------
n=o ‘ V=O ' »

S’ Avi>iì+l,'r)
V (n H- =2 ----- Ti--------

w==0 v^O •

W_Z?° S* AvwH+l,r)y (n + --- 2j----------p— -jev®(v)(ie)
"o v—0 V-

2°(n_« + iy-^knXn = 2

(l) s. Pincherle, A proposito di un recente teorema del sig. Hadamard 
(«Rend. R. Acc. delle Scienze di Bologna», 1899); Di alcune operazioni 
atte ad aggiungere o togliere singolarità in una funzione analitica (« An­
nali di Matematica », 1900) ; Le operazioni distributive e le loro applica­
zioni alV analisi (Bologna, 1901).
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Ma da mie precedenti ricerche (*) si ha

(12)

v!

v=0

àvl(—u-H,r)------- ------- ^vj)v — (Bx*yX-r(u-1)

K**—1, r)
xvDv ==•#—O^Z))»*

’r)>, -----D(Bx“)-

v!
Vt* Av(—w + IH—r)Y, 1 p---------- ,-^7> — (c\D)’a;-’(‘‘-i)
V—Ü

ed allora per le (3), (4), (5), (6) seguono le formule
M-oo . s=r j

2 n(u~^r)knxn = — J] J.is)a?r-s4'1Z),^s_1^(^) 
n—0 r ' 3=1

n—oc s=r I
2 (^h-l)(_M+1’r^^n= ! S A{̂üßs-iD,'xr-s+1^(x)
n=0 r ’ s=l

n=oo s=r

2 (n -+- te)(w-i,r)fcMa?w — — Br+i.s-i-i
- n=0 ' s=0
n—o° s=r

2 (h — re -+• 1)H+V)ft(la?w = --j Br+ijS+i^v”sl)r^o(;r). 
n=0 ’ s=0 ji

Queste nuove formule sono molto più interessanti delle (11) in 
quanto qui l’operatore Dèa indice costante.

Infatti nel caso kn = 1, \œ\<Z 1, si ha subito
X^ I xi __ 11

x,"~iD,'xid)(x) = 5--------= .r,,—--------------- -- — -------- . =TV 7 1 -- x L 07 — 1 #-’■1.1

e ne seguono i risultati particolari

(14)

(\) L. Toscano, Operatori lineari e numeri di Stirling generalizzati 
(« Annali di Matematica », serie IV, tomo XIV, 1935-36).
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J] (n -+- uyu~ 
n= 0

-l.r)®« = _ ,+1 j3$4-l,3+l»S
V ' 8=0

(14) n -od

(w H -f- 
n=0

!)(-»+!, r) XB» = ( _2 Ä, 3+1 ^’"s.

4. Dal confronto delle ultime quattro formule precedenti è pos­
sibile dedurre due relazioni sui polinomi , e per mezzo di
esse assegnare nuove formule su gli operatori considerati in questa 
Nota. Infatti :

Dalle prime due formule si deduce facilmente
/ I - \ A 'W 1-2) . (w)(Lo) Ar,r—8^1— Ars •

Dalle ultime due risulta

S 1X" ' 1 --= 2 , 3+1 «■-* 1)11 - a,')r+1
8- 0 8—0

e da questa segue

(Hi) - =
\ ò ! / 

che, insieme alla precedente, per u— 1 si riducono alla ben nota 
relazione Ar, r -s+t — Ar, s-

Infine dalle relazioni (3), (4), (o), (6), per le (15) e (16) seguono 
le formule importanti

x~r(u~1)(xaD)rx — x(Dx~“+zyxr(u~


