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PICCOLE NOTE 77

Sul criterio di integrabilità delle forme differenziali 
di qualsivoglia grado (*).

(*) Lavoro eseguito nell’ Istituto per le Applicazioni del Calcolo del 
Consiglio Nazionale delle Ricerche.

Nota di Mauro Picone (a Roma).

Sunto. - Si osserva un criterio, necessario e sufficiente, di integrabilità, 
in un dato campo, di una forma differenziale di qualsivoglia grado, 
indipendentemente dalla derivabilità parziale dei coefficienti della forma 
e dall’ordine di connessione del campo.

Sia A un campo (un insieme aperto) dello spazio SM a r dimen­
sioni, del quale diremo xì} æ2,..., xr le coordinate di punto. Sup­
posto A connesso, cioè tale che due qualsivogliano punti di esso 
possano sempre considerarsi come terminali di una poligonale tutta 
contenuta in A, è noto che, assegnate n funzioni

fi, /;•••••

continue in ogni punto di A, condizione necessaria e sufficiente 
affinchè esista una funzione F, differenziabile in ogni punto di A, 
per la quale si abbia

dF = fìdxl 4- /zàz -4- ... 4- fndxn,

è che, per ogni poligonale II semplice e chiusa contenuta in A, 
riesca

fifidx, -+- fìdxì -+-... -+- fndxn) — 0.

n
Tale condizione di integrabilità della forma differenziale li­

neare S fhdxh è dunque affatto indipendente dalla derivabilità 
delle fh e dall’ordine di connessione del campo A. In questa pic­
cola nota mi propongo di osservare il seguente teorema che for- 
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nisce un analogo criterio per l'integrabilità delle forine differen­
ziali di qualsivoglia grado :

I numeri interi li15 li2...., lir, positivi o nulli, abbiano per
/r 4- n — 1\ . .

somma n, e siano assegnate le \ I funzioni :

fhïh2...hr(xï, xrj,

+ + hr = n; h1, hr = 0, 1,.... nf

continue in ogni punto di A. Condizione necessaria e sufficiente 
affinchè esista una funzione F. dotata, iu ogni punto di A, delle 
derivate parziali, fino a quelle incluse d'ordine n, finite e continue, 
per la quale si abbia

0. n
(1) d»F= X fo !J ... à/.-,

hyh2...hr * ’

hi I h2+...+hr-~n

è che. per ogni poligonale li semplice e chiusa, contenuta in A,

riescano verificate le
Zr n — 1\ 
\ n — 1 /

eguaglianze :

/» v, n—p /
<2) / S »r+»r d(V> «,?'-) = 0,

I SiS2...Sr ’

Si-f-S2~|-...+Sy=M—P 
n

(p = 0, 1,..., -r — 1; h14-h24-...4-hr=p; hy, h2, ..., = 0, 1,..., p).

Poiché il teorema è vero quando il grado della forma diffe­
renziale è uno, esso sarà dimostrato se faremo vedere che, suppo­
stolo vero per ogni grado n, della forma, lo è pure per il 
grado n -+- 1. Sia dunque, in tale ipotesi, da integrare in A F equa­
zione differenziale

Posto, per ciascuna rpla di indici■hl, h2,..., hr, positivi o nulli, 
di somma n, 

_____ _ _ 
... dxrhr . ^^1^2

si trae dalla (3)

(-■>) <^Ms...fcr=fhi+i,fcs...krda;1-t-/jll)hs+i)...,jlrdajt4-...4-fhi,h2,...,hr.11 dxr, 

e condizione necessaria e sufficiente perchè ciò possa aversi è
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che, per ogni poligonale n, semplice e chiusa, contenuta ip X 
. . _ ir n — 1\

sussistano le I I eguaglianze :

(6) I l,h2,...,hrdxl ... +fh1,hs,...,hr+ldxr) = 0,
il

(h^h^ ...-+-hr==n; hu Z?2,..., hr~ 0, 1,..., n).

Soddisfatte tali condizioni la (3) potrà integrarsi se e solo se 
potrà integrarsi la seguente

0, n .
ì H J

dF d&i*idx^ ... dx^r,
hji2...hr *’ 2”” *”

cioè, se e solo se, per ogni poligonale n, riescono verificate le 
lr-+-n —1\
( n  1 ) eguaglianze

a 0, n—p , . ./ rn (W — pi !
I S^~S~! s s ?7h4-8i, 7124-82,.../ hr-+-sr d^X^Xÿ8'2 ... æ?,s») — 0,
I S1S2... s,-

</ Si4-824 .. .4-8s —-r—p 
n

(p — 0, 1,..., n — 1 ; hx 4- 4- ... 4- ; hl, &2,..., 7^. — 0, 1,..., p).

Ma un’integrazione per parti fornisce

I+81,432,..., I 3/^/1^2S2... = —JÆ/1 <Tg®2... X^rdyh! I Si, h2+s2,..., 7r,.4-8

à à
e pertanto, condizione necessaria e sufficiente affinchè F equazione 
differenziale (3) sia integrabile è che, per ogni poligonale II, siano 
verificate le

r-+-ri\ Ir -+- n — 1\ Ir-t-n — 1
n ) \ n / ~*  \ n — 1

eguaglianze che si ottengono aggregando alle (6) le seguenti

r’x? (»—/>)! ,
(7) / 2j j ! S ! ... x^r[fhì, 31+|)fe.2_F32J...,hr l s,.dxt -+-

7 8182... sr

n
-4- /-11481,7r24 32 4 1,..., 7ir< Srdx^ 4- ... 4- fhx-4 81/7124 82,..., 4-3-.4-1 — o,

1)..., w— 1; ^14-à24-... -hhr=p; ..., 7^r = 0, 1,..., p).

In tali ultime eguaglianze figurano i coefficienti

(8) /A14(71>^24Cr2,.../àr4

con -p ^2 4-... 4- (7,. —N—p4-l. Ora, se §1^1, ", Ib.
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somma dei fattori del comunq coefficiente (8), nella (7), è data da

! (’,-1)!

2 * "• •

! - »•,

«//‘...a; ' ,<c ff! 1

, ,--------------j \ ,dx,-i----- ------ -7 - da;, -+- ,J (<?, — 1)! aj.-aj (7,-1)! *

1- à --------- ------- P+l)' JJ <71 O',

— l)!a ’7 n— p 4-1 <Tj ! <rt !... <rr ! 1 1 2

se <71z=z0, 1,..., > 1, la stessa somma è data da

, xar a?2CT2-1
< pl’ (U=^i)!

(x.aa...X,ar -’l-1
(n—P)! I—F

\ °2 • •

! - -u-, !

eco., e pertanto 1’ eguaglianza (7), moltiplicandone ambo i membri 
per n —p 4- 1, si scrive anche :

Ç (n —p-el)! CT2
I / I a ! a ! a 1CT2.•»•> u(-<r1 <r2 ...»’)—0.
f (71 (72...Or

U (71-4-CT2 * ...+<7r:=^~P^ 1

Si ha dunque, come condizione necessaria e sufficiente per l’inte­
grabilità dell’ equazione differenziale (3), che, per ogni poligonale n, 

. . (r —h n\
devono essere verificate le eguaglianze :\ n / ® ®

V (^-U 1 —jPH f 81 §2 3 x ___  A
g I g f g j Mi » si ? ^2-*- »2 ?..., fer-Fsr d(æj lv2 ... 'i ) — 0, 

SiS2;..sr

n
(p zz7 0,1,..., Î hj -+- h>2 +-... + =^p * h], h2,..., Tîy 0, 1,..., p),

ciò che dimostra il teorema.
È altresì facile stabilire che per l’integrabilità della (1) occorre 

e basta che le eguaglianze (2) siano verificate soltanto per quelle 
particolari poligonali II, semplici chiuse e contenute in A, per le 
quali ciascun lato è parallelo ad uno degli assi coordinati. Ci limi­
teremo ora a considerare tali poligonali, che diremo rettangolari, 
e l’integrazione delle equazioni differenziali, in due variabili indi­
pendenti x è y,

(9) dnF ■= fh(x, y)dxhdy’l~h.

Per ogni poligonale rettangolare TI, semplice e chiusa, conte­
nuta in A, denoteremo con il campo dei punti interni a II e con 

I ( fdx 4- gdp), 
h
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l’integrale della forma differenziale lineare fdx 4- gdy, esteso a II, 
nel verso positivo che a questa compete come frontiera di All. Se 
le fh sono in A dotate delle derivate parziali del prim’ordine, è, 
notoriamente, condizione necessaria per l’integrabilità della (9) 
che si verifichino in A, identicamente, le eguaglianze :

■(10) =' ' dy dx ’ . v
le quali possono anche dedursi dalle [cfr. la (6)]

p f(fhdx -+- fK+1dy) — °, 

n
applicate al contorno II di un quadrato, contenuto in A, di lato p 
infinitesimo. Ebbene, si può facilmente dimostrare che :

Verificandosi le identità (10), comunque si assuma in A, una 
poligonale rettangolare II, semplice e chiusa, si ha :

r q fa\/ S ( , ) fk-U®. y]d(xi-sys} = 0,

n
(q=z 1, 2,..., n; /r —0, 1,..., -r — q),

se AjH è contenuto in A ; comunque si assumano in A due sistemi 
(IIj, Hz,..., nv) e (II/, n/,..., n'v<) di poligonali rettangolari, a due 
a due, quelle di uno stesso sistema, prwe di punti interni comuni, 
Lr à

Ìj fS(s)/k+5(æ,2/Ws_T) = Z / S ( «

fc=l/s=o''0/ - fc=l/3=(ÓS/
n*'

-se, detta FA Za frontiera di A, riesce

(Aii> ANz ... 4- Ajiv).FA — (Atn/ 4- aji/ ... -+- AiN'.^FA.

Ciò posto, verificandosi le identità (10), ha senso la definizione 
seguente : Per ogni parte FtA della frontiera FA di A, per la quale 
esista un sistema (ni? II2,..., nv) di poligonali rettangolari semplici 
e chiuse, contenute in A, a due a due prive di punti interni co­
muni, tali che si abbia

(AA AJI2 ... -+- AJ1V)-FA = FiA,
si pone

/ q\ v r q / \
S L w*,  = S / S < ku*,
S=° fc=lj 8=0 ' '

nfe
Ogni tale parte F,A di FA si dirà, una parte interna e staccata 

di FA. Non è escluso, ovviamente, che FfA possa ridursi ad un 
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punto. Come corollario d,el dato criterio di integrabilità della (9) 
si ottiene, ciò posto, facilmente il teorema :

Supposte verificate in A le identità (10), condizione necessaria e 
sufficiente affinchè l’equazione (9) sia integrabile in A è che per

ogni parte FiA interna e staccata di FA, siano verificate le — 

eguaglianze :
q /a\

1

(q = l, 2,..., n; à —0, 1,. .. -r — q).

Siano Ff A, jF/'A,..., JF/^A, fx determinate parti interne e stac­
cate di FA, e si abbia che: 1°) ciascuna di queste parti è un con­
tinuo ; 2°) ogni altra parte interna e staccata di FA consiste nella 
somma di alcune delle <x indicate parti ; si ha allora che :

Supposte verificate in A le identità (10), condizione necessaria e 
sufficiente affinchè la (9) sia integràbile in A è che sussistano le 

n(n-f-l)jx —— ----- eguaglianze :

[ S ( s ) £•+•<* ’ ì/W’-y)—o, 

J 8=0 V
FjtrìA

(r = 1, 2,...,jx; q = l, 2,..., n; h = 0, 1,...,n — q).


