BOLLETTINO UNIONE MATEMATICA ITALIANA

PIERO BUZANO

Studio di una corrispondenza fra due coniche

Bollettino dell'Unione Matematica Italiana, Serie 1, Vol. 12 (1933), n.2, p. 80–85.

Unione Matematica Italiana

```
<http:
//www.bdim.eu/item?id=BUMI_1933_1_12_2_80_0>
```

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Studio di una corrispondenza fra due coniche.

Nota di Piero Buzano (a Torino).

Santo. - Un invariante proiettivo differenziale simultaneo di due curve piane mi conduce alla considerazione di una corrispondenza fra le due curve: studio questa corrispondenza nel caso in cui le due curve sono coniche e la caratterizzo geometricamente.

A ogni coppia di elementi del 2° ordine, appartenenti rispettivamente a due curve piane γ_1 e γ_2 , non rette, è connesso un in-

variante proiettivo I (1) che nel caso più generale fu considerato per la prima volta da C. Bouton (2). Ove si indichino con:

$$y_1 = y_1(x_1); \quad y_2 = y_2(x_2)$$

le equazioni di γ_1 e γ_2 (3) esso assume la seguente espressione:

$$I = \frac{y_1''(x_1)}{y_2''(x_2)} \left[\frac{y_2(x_2) - y_1(x_1) - y_2'(x_2)(x_2 - x_1)}{y_2(x_2) - y_1(x_1) - y_1'(x_1)(x_2 - x_1)} \right]^3.$$

In generale I non sara costante quando x_1 e x_2 variano in modo qualunque e quindi due coppie di elementi del 2° ordine, i quali appartengano l'uno a γ_1 e l'altro a γ_2 , non saranno in generale proiettive fra loro: perchè lo siano, occorre e basta che gli elementi che le compongono siano omologhi nella corrispondenza (fra γ_1 e γ_2) di equazione:

$$(*) \qquad \frac{y_1''(x_1)}{y_2''(x_2)} \left[\frac{y_2(x_2) - y_1(x_1) - y_2'(x_2)(x_2 - x_1)}{y_2(x_2) - y_1(x_1) - y_1'(x_1)(x_2 - x_1)} \right]^3 = c$$

(c costante; variabili x_1, x_2).

Se eccezionalmente quest'equazione è identica, non è più determinata alcuna corrispondenza e due coppie di elementi del 2º ordine sono sempre proiettive fra loro.

Il Bouton nel lavoro citato dimostra che, quando γ_1 e γ_2 coincidono, cioè quando i due elementi del 2º ordine appartengono ad una medesima curva, se I ha sempre lo stesso valore qualunque sia la coppia di elementi che si considera, la curva è una conica. In tal caso la (*) si riduce a c=-1 e non determina più la corrispondenza. Ora, data la natura infinitesimale della questione, si può presumere che non vi siano altre eccezioni, vale a dire che

- (¹) Il computo dei parametri non lascia prevedere questo risultato poichè una coppia di elementi del 2º ordine dipende, come un'omografia piana, da 8 parametri.
- (2) CHARLES BOUTON, « Bull. Amer. Math. Soc. », 4 (1898), p. 313. Questo invariante era però già stato considerato, come invariante di contatto, nel caso particolare di una coppia di elementi del 2º ordine fra loro tangenti (cfr. G. Fubini et E. Cech, Introduction à la géométrie projective différentielle des surfaces. Chap. II, 7).
- (3) Indico rispettivamente con x_1 , y_1 e x_2 , y_2 le coordinate correnti su γ_1 e γ_2 , pur intendendo di aver riferito le due curve ad uno stesso sistema cartesiano o proiettivo. Inoltre supporrò adirittura che γ_1 e γ_2 siano curve analitiche.

quando γ_1 e γ_2 sono distinte, la corrispondenza sia sempre determinata (1).

Voglio qui soffermarmi sullo studio della corrispondenza rappresentata dalla (*) nel caso in cui le curve γ₁ e γ₂ sono due coniche (distinte). Se esse hanno le seguenti equazioni:

$$f(x, y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33} = 0$$

$$g(x, y) = b_{11}x^2 + 2b_{12}xy + b_{22}y^2 + 2b_{13}x + 2b_{23}y + b_{23} = 0$$

di cui indichiamo i discriminanti rispettivamente con A e B, si

(1) Infatti lo si può verificare nel seguente modo. Posto nella (*) $x_2 = x_1 + h$, sviluppando in serie di potenze h si ha:

$$\frac{{y_1}^{\prime\prime}(x_1)}{{y_2}^{\prime\prime}(x_1)+{y_2}^{\prime\prime\prime}(x_1)h+\dots} \left[\frac{{y_2}(x_1)-{y_1}(x_1)-\frac{1}{2}{y_2}^{\prime\prime}(x_1)h^2-\dots}{{y_2}(x_1)-{y_1}(x_1)+|{y_2}^{\prime}(x_1)-{y_1}^{\prime}(x_1)|h+\frac{1}{2}{y_2}^{\prime\prime}(x_1)h^2+\dots} \right]^2 = c,$$

e, supposte distinte le due curve, cioè $y_2(x_1) - y_1(x_1) \neq 0$ si ha ancora:

$$\frac{y_{4}''(x_{4})}{y_{2}''(x_{4})+y_{2}'''(x_{4})h+\dots}\left[1-3\frac{y_{2}'(x_{4})-y_{4}'(x_{4})}{y_{2}(x_{4})-y_{4}(x_{4})}h+\dots\right]=c.$$

Noi vogliamo escludere che questa sia un'identità in h: se lo fosse si dovrebbe avere in particolare:

$$\begin{aligned} c \frac{{y_2}''}{{y_1}''} &= 1 \ ; \\ c \frac{{y_2}'''}{{y_1}''} &= -3 \frac{{y_2}' - {y_1}'}{{y_2} - {y_1}} ; \end{aligned}$$

ma dalla 1^a, non potendo essere c=0, si ricava: $y_2=\frac{1}{c}y_1+2x_1+\beta$, dove α e β sono costanti arbitrarie, e sostituendo nella 2^a questo valore di y_2 e riducendo a forma intera si ottiene:

$$(y_1y_1''' + 3y_1'y_1'')\frac{1-c}{c} + (x_1y_1''' + 3y_1'')x + y_1'''\beta = 0$$

la quale è una relazione lineare a coefficienti costanti fra 3 funzioni di x_i : dovrebbe quindi essere nullo il loro Wronskiano, vale a dire, come si vede facilmente, dovrebbe essere verificata l'equazione :

la quale, come è noto, esprime che γ_1 è una conica. Lo stesso si potrebbe dire per γ_2 .

Dunque eventuali eccezioni si potrebbero avere solo se le due curve sono coniche: ma in tal caso che la corrispondenza sia sempre determinata (se le 2 coniche sono distinte) risulta dallo studio della corrispondenza stessa fatto qui in seguito. ottiene:

$$y_{1}' = -\frac{f_{x}}{f_{y}} = -\frac{a_{11}x_{1} + a_{12}y_{1} + a_{13}}{a_{12}x_{1} + a_{22}y_{1} + a_{23}}; \quad y_{2}' = -\frac{g_{x}}{g_{y}} = -\frac{b_{11}x_{2} + b_{12}y_{2} + b_{13}}{b_{12}x_{2} + b_{22}y_{2} + b_{23}};$$

e, derivando queste, con facile calcolo:

$$y_1'' = \frac{A}{(a_{12}x_1 + a_{22}y_1 + a_{23})^2}; \quad y_2'' = \frac{B}{(b_{12}x_2 + b_{22}y_2 + b_{23})^2}.$$

Sostituendo questi valori nell'equazione (*) della corrispondenza, essa diventa:

$$\frac{A}{B} \left(\frac{b_{12}x_2 + b_{22}y_2 + b_{23}}{a_{12}x_1 + a_{22}y_1 + a_{23}} \right)^3 \left[\frac{y_2 - y_1 + \frac{b_{11}x_2 + b_{12}y_2 + b_{13}}{b_{12}x_2 + b_{22}y_2 + b_{23}} (x_2 - x_1)}{y_2 - y_1 + \frac{a_{11}x_1 + a_{12}y_1 + a_{13}}{a_{12}x_1 + a_{22}y_1 + a_{23}} (x_2 - x_1)} \right]^3 = c,$$

cioè:

$$-\frac{A}{B}\frac{M^3}{L^3}=c,$$

avendo posto:

$$M = -(b_{11}x_2^2 + 2b_{12}x_2y_2 + b_{22}y_2^2 + b_{13}x_2 + b_{23}y_2) + b_{11}x_1x_2 + b_{12}(x_1y_2 + x_2y_1) + b_{22}y_1y_2 + b_{13}x_1 + b_{23}y_1,$$

vale a dire (tenuto presente che x, e y, soddisfano l'equazione di y,):

$$\begin{split} M &= b_{11} x_1 x_2 + b_{12} (x_1 y_2 + x_2 y_1) + b_{22} y_1 y_2 + b_{13} (x_1 + x_2) + b_{23} (y_1 + y_2) + b_{33}, \\ \text{e analogamente} \end{split}$$

$$L = a_{11}x_1x_2 + a_{12}(x_1y_2 + x_2y_1) + a_{22}y_1y_2 + a_{12}(x_1 + x_2) + a_{23}(y_1 + y_2) + a_{32}.$$

Quest'equazione si scinde in tre che, posto $\lambda = \omega \sqrt[3]{c \frac{B}{A}}$ (dove ω è una qualunque delle radici cubiche dell'unità), assumono la seguente forma:

$$(\lambda a_{11} + b_{11})x_1x_2 + (\lambda a_{12} + b_{12})(x_1y_2 + x_2y_1) + (\lambda a_{22} + b_{22})y_1y_2 + (\lambda a_{12} + b_{12})(x_1 + x_2) + (\lambda a_{23} + b_{23})(y_1 + y_2) + \lambda a_{22} + b_{23} = 0.$$

Questa è l'equazione della corrispondenza: essa dice che si corrispondono quei punti (x_1y_1) e (x_2y_2) di γ_1 e γ_2 , i quali sono coniugati rispetto alla conica γ_0 di equazione:

$$\lambda f(x, y) + g(x, y) = 0$$

appartenente al fascio di γ_1 e γ_2 . Vale a dire: ad ogni punto di γ_1 (di γ_2) corrispondono su γ_2 (su γ_1) le due intersezioni con la sua polare rispetto a γ_0 . La corrispondenza fra γ_1 e γ_2 è dunque una corrispondenza algebrica (2, 2).

Per caratterizzarla geometricamente in modo completo farò ancora vedere qual'è il legame fra il valore c dell'invariante e la posizione della conica γ_0 nel fascio considerato, dimostrando che il prodotto dei tre birapporti formati da γ_2 , γ_1 , γ_0 con ciascuna delle tre coniche degeneri del loro fascio è uguale a-c. Detti infatti τ_1 , τ_2 , τ_3 questi birapporti e detti μ_1 , μ_2 , μ_3 i tre valori del parametro corrispondenti alle coniche degeneri, si ha:

$$\tau_1\tau_2\tau_3=(0,\;\infty,\;\lambda,\;\mu_1)(0,\;\infty,\;\lambda,\;\mu_2)(0,\;\infty,\;\lambda,\;\mu_3)=\frac{\lambda^3}{\mu_1\mu_2\mu_3},$$

ma μ_1 , μ_2 , μ_3 sono radici dell'equazione di 3º grado:

$$|\mu a_{rs} + b_{rs}| \equiv A\mu^3 + P\mu^2 + Q\mu + B \equiv 0$$

e quindi si ha: $\mu_1\mu_2\mu_3 = -\frac{B}{A}$; d'altra parte si era posto $\lambda = \omega \sqrt[3]{c\frac{B}{A}}$ e quindi tenendo conto di questi valori si ottiene:

$$\tau_1 \tau_2 \tau_3 = -c$$

la quale, come si voleva dimostrare, data γ_0 definisce geometricamente il corrispondente valore di c.

Infine segnalerò ancora i seguenti casi particolari notevoli.

Se è c=0 e quindi $\lambda=0$, la conica γ_0 coincide con γ_2 e si ha la ben nota corrispondenza algebrica (2, 2) ottenuta associando a ogni punto di γ_1 i due punti di contatto delle tangenti condotte da esso alla conica γ_2 . Analogamente per $c=\infty$, scambiate fra loro γ_1 e γ_2 .

Se poi la conica γ_0 è una conica degenere del fascio individuato da γ_1 e γ_2 , e precisamente degenere in una coppia di rette distinte, le coppie di punti di γ_1 che corrispondono ai punti di γ_1 variano in un'involuzione J_2 , e così pure le coppie di punti di γ_1 che corrispondono ai punti di γ_2 variano in un'involuzione J_1 : anzi si vede facilmente che ai due punti di una coppia di J_1 (di J_2) corrisponde una medesima coppia di J_2 (di J_1) e quindi la corrispondenza si può considerare come una corrispondenza (1, 1) fra le coppie delle due involuzioni J_1 e J_2 .

Se infine la conica γ_0 degenera in una coppia di rette coincidenti (per il che occorre che γ_1 e γ_2 siano bitangenti o abbiano contatto quadripunto) ai punti di γ_1 (di γ_2) corrispondono due punti fissi di γ_2 (di γ_1): la corrispondenza è degenere. Ma in questo caso, in cui γ_1 e γ_2 sono bitangenti oppure hanno contatto quadripunto, anche se γ_0 non è degenere, la corrispondenza è di tipo particolare poichè è sempre riducibile a corrispondenze proiettive. Per vederlo

basta assumere rispettivamente, per γ_1 e γ_2 , secondo che sono bitangenti o hanno contatto quadripunto, le seguenti equazioni:

$$\begin{cases} \gamma_1 \rangle & y = x^2 \\ \gamma_2 \rangle & y = hx^2 \end{cases}; \qquad \begin{cases} \gamma_1 \rangle & y = x^2 \\ \gamma_2 \rangle & y = x^2 + h \end{cases}$$

e si trova facilmente che l'equazione della corrispondenza si spezza rispettivamente in equazioni del tipo:

$$\frac{x_2}{x_1} = \text{cost.}; \quad x_2 - x_1 = \text{cost.}$$

che rappresentano appunto corrispondenze proiettive.