BOLLETTINO UNIONE MATEMATICA ITALIANA

Carlos Biggeri

Sull'ordine delle sezioni degl'integrali determinanti generalizzati

Bollettino dell'Unione Matematica Italiana, Serie 1, Vol. 11 (1932), n.4, p. 224–228.

Unione Matematica Italiana

<http:

//www.bdim.eu/item?id=BUMI_1932_1_11_4_224_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Sull'ordine delle sezioni degl'integrali determinanti generalizzati.

Nota di CARLOS BIGGERI (Buenos Aires).

Chiameremo integrale determinante generalizzato, più brevemente integrale D, l'espressione:

(1)
$$\int_{0}^{\infty} a(r) \cdot e^{-\lambda(r) \cdot z} \cdot dr,$$

dove: a(r) è una funzione complessa (o reale) della variabile reale r, integrabile in ogni intervallo finito; $\lambda(r)$ è una funzione reale, crescente con limite $+\infty$ per $r \to +\infty$, e z=x+iy è una variabile complessa.

Se $\lambda(r) = r$, l'integrale (1) è un integrale determinante ordinario. Nel suo semipiano di convergenza (supponendo che esista) l'integrale (1) definisce una funzione regolare f(z).

La funzione a(r) è la generatrice della funzione f(z).

Chiameremo sezione fra 0 e r, brevemente sezione dell'integrale (1) (anche se l'ascissa di convergenza di (1) sia $+\infty$) l'integrale:

$$g(r,z) = \int_{0}^{r} a(\rho) \cdot e^{-\lambda(\rho) \cdot z} \cdot d\rho.$$

Ci proponiamo, nella presente Nota, di dimostrare una proprietà relativa all'ordine di crescenza della funzione g(r, z) (in particolare della funzione f(z), quando questa esista) per $|y| - \infty$.

Teorema. — Supponiamo che esista un numero fisso $z_0 = x_0 + iy_0$ (il quale può essere reale) tale che si verifichino per ogni r dell'intervallo $0 \le r < +\infty$, le disuguaglianze

$$\left| a(r) \cdot e^{-\lambda(r) \cdot z_0} \right| < k_1$$

$$\left| A(r) \right| < k_2$$

dove si ha:

$$A(r) = \int_{0}^{r} a(\rho) \cdot e^{-\lambda(\rho) \cdot z_{0}} \cdot d\rho$$

essendo k, e k, costanti.

Supponiamo ancora che $\lambda(\mathbf{r})$ sia derivabile e $\lambda(0) \geq 0$. Con queste ipotesi, si ha che:

$$g(r,z)=0(y)$$

uniformemente nel semipiano $R(z)=x>x_0+\epsilon$ (qualunque sia $\epsilon>0$) e per ogni valore di r; vale a dire: dati arbitrariamente due numeri positivi ϵ e δ , esiste un $y_0=y_0(\delta,\epsilon)\geq 0$, tale che per ogni z la cui parte reale è maggiore di $x_0+\epsilon$, e per ogni r dell'intervallo $(0,+\infty)$, si ha:

$$\left|\frac{g(r,z)}{y}\right|<\delta,$$

sempre che si abbia $|y| > y_0$.

DIMOSTRAZIONE. — Sia R un valore compreso fra $0 \cdot \text{od } r$. Abbiamo dunque che:

(2)
$$g(r,z) = \int_{0}^{r} a(\rho) \cdot e^{-\lambda(\rho) \cdot z_0} \cdot e^{-\lambda(\rho) \cdot (s-z_0)} \cdot d\rho = I_1 + I_2 + I_3 + I_4$$

essendo:

(3)
$$I_1 \equiv \int_0^R a(\rho) \cdot e^{-\lambda(\rho) \cdot z_0} \cdot e^{-\lambda(\rho) \cdot (z - z_0)} \cdot d\rho$$

(4)
$$I_z = A(r) \cdot e^{-\lambda(r) \cdot (z - z_0)}$$

(5)
$$I_3 = -A(R) \cdot e^{-\lambda(R) \cdot (z-z_0)}$$

(6)
$$I_4 = -\int_{\mathcal{B}}^r A(\rho) \cdot de^{-(\rho) \cdot (z-z_0)}.$$

Essendo $\lambda(r) \ge \lambda(0) \ge 0$, nel semipiano $R(z) = x > x_0 + \varepsilon$, da (3) si deduce:

$$(7) \qquad |I_{1}| \leq \int_{0}^{R} |a(\rho) \cdot e^{-\lambda(\rho) \cdot z_{0}}| \cdot e^{-\lambda(\rho) \cdot (x-x_{0})} \cdot d\rho < k_{1} \cdot \int_{0}^{R} d\rho = k_{1} \cdot R;$$

secondo (4):

$$|I_2| = |A(r)| \cdot e^{-\lambda(r) \cdot (x-x_0)} \leq |A(r)| < k_2;$$

secondo (5):

(9)
$$|I_3| = |A(R)| \cdot e^{-\lambda(R) \cdot (x - x_0)} \le |A(R)| < k_3;$$

tenendo conto che:

$$\left| de^{-\lambda(\rho)\cdot(z-z_0)} \right| = -\frac{|z-z_0|}{x-x_0} \cdot de^{-\lambda(\rho)\cdot(x-x_0)}$$

dalla (6) si deduce:

$$egin{aligned} |I_4| &\leq -\int\limits_R |A(
ho)| \cdot rac{|z-z_0|}{x-x_0} \cdot de^{-\lambda(
ho) \cdot (x-x_0)} &< \ &< k_2 \cdot rac{|z-z_0|}{x-x_0} \cdot \left[e^{-\lambda(R) \cdot (x-x_0)} - e^{-\lambda(r) \cdot (x-x_0)}
ight] \end{aligned}$$

oppure:

$$|I_4| < k_2 \cdot \frac{|z-z_0|}{x-x_0} \cdot e^{-\lambda(R)\cdot(x-x_0)}$$

Dalla (10) si deduce:

(11)
$$|I_4| < k_2 \cdot \sqrt{1 + \frac{(y - y_0)^2}{\varepsilon^2}} \cdot e^{-\lambda(R)} \cdot \varepsilon^{-\lambda(R)}$$

Secondo (2), (7), (8), (9) e (11), abbiamo

$$(12) \left| \frac{g(r,z)}{y} \right| < k_1 \cdot \frac{R}{|y|} + 2k_2 \cdot \frac{1}{|y|} + k_2 \cdot \sqrt{\frac{1}{y^2} + \frac{1}{\varepsilon^2} \cdot \left(1 - \frac{y_0}{y}\right)^2} \cdot e^{-\lambda(R) \cdot \varepsilon}$$

Se adesso supponiamo $R \ge r$, abbiamo:

$$|\frac{g(r,z)}{y}| \leq \frac{1}{|y|} \cdot \int_{0}^{R} |a(\rho) \cdot e^{-\lambda(\rho) \cdot z_{0}}| \cdot e^{-\lambda(z) \cdot (x-x)} \cdot d\rho +$$

$$+ \frac{1}{|y|} \cdot \int_{r}^{R} |a(\rho)| e^{-\lambda(\rho) \cdot z_{0}}| \cdot e^{-\lambda(\rho) \cdot (x-x_{0})} \cdot d\rho <$$

$$\leq \frac{1}{|y|} \cdot k_{1} \cdot R + \frac{1}{|y|} \cdot k_{1} \cdot (R-r) = k_{1} \left(\frac{2R}{y} - \frac{r}{|y|}\right).$$

Facendo:

$$R = +\sqrt{|y|}$$

la (12) risulta:

$$(14) \quad \left| \frac{g(r, z)}{y} \right| < k_1 \cdot \frac{1}{\sqrt{|y|}} + 2k_2 \cdot \frac{1}{|y|} + k_2 \cdot \sqrt{\frac{1}{y^2} + \frac{1}{\varepsilon^2} \cdot \left(1 - \frac{y_0}{y}\right)^2} \cdot e^{-\lambda(R) \cdot \varepsilon}$$

e la (13) ne diviene:

$$\left|\frac{g(r,z)}{y}\right| < k_1 \cdot \left(\frac{2}{\sqrt{|y|}} - \frac{r}{|y|}\right).$$

Sia adesso δ un numero positivo preso arbitrariamente. Siccome: $\lim \lambda(r) = +\infty$ per $r \to +\infty$, i secondi membri della (14) e (15) sono minori di δ partendo da un certo valore $y_0 = y_0(\delta, \epsilon)$; poniamo:

$$R_0 = + \sqrt{|y_0|}$$

Secondo la (14) se $r > R_0$ e secondo la (15) se $r \le R_0$, si ha per ogni z la cui parte reale sia maggiore di $x_0 + \varepsilon$ e per ogni r dell'intervallo $0 \le r < +\infty$:

$$\left|\frac{g(r,z)}{y}\right|<\delta.$$

Se la funzione f(z) esiste, (cioè, se l'ascissa di convergenza eventuale k di (1) è finita o uguale a $-\infty$, supponendo che $x_0 > k$, nel qual caso la limitazione di A(r) è una conseguenza), passando al limite per $r \to +\infty$ in entrambi i membri della (16), si ha che:

$$\left|\frac{f(z)}{y}\right| \leq \delta$$

vale a dire f(z) = 0(y) uniformemente nel semipiano $R(z) = x > x_0 + \varepsilon$. Chiamiamo $\mu(x)$ l'ordine della funzione f(z) sulla retta, parallela all'asse y, di ascissa x, cioè:

$$\mu(x) = \overline{\lim}_{y \to \infty} \frac{\log |f(x+iy)|}{\log |y|}.$$

Dalla (17) si deduce che:

$$\frac{\log|f(x+iy)|}{\log|y|} \leq 1 + \frac{\log\delta}{\log|y|}$$

donde

(18)

$$\mu(x) \leq 1$$

per ogni $x > x_0$.

Chiamiamo $\nu(x_0)$ l'ordine della funzione f(z) nel semipiano $R(z) = x > x_0$, cioè:

$$v(x_0) = \overline{\lim}_{y \to -\infty} \frac{\log E(y)}{\log |y|},$$

dove E(y) è l'estremo superiore della funzione f(z) in detto semipiano. Siccome la disuguaglianza (17) si verifica uniformemente nel semipiano $x > x_0 + \varepsilon$, si ha che:

$$v(x_0 + \varepsilon) \leq 1$$

per ogni $\epsilon > 0$, e pertanto si ha:

$$v(x_0) \leq 1$$
.

Tenendo conto della disuguaglianza (18) e poichè la funzione f(z) è regolare nel semipiano $x > x_0 > k$, in virtù d'un classico teorema di LINDELÖF si deduce che $\mu(x)$ è una funzione convessa di x nell'intervallo $x_0 < x < +\infty$.

Abbiamo supposto la derivabilità della funzione $\lambda(r)$ al fine di semplificare la dimostrazione; in caso contrario può farsi uso di integrali di STIELTJES.

Se $\lambda(0)$ fosse negativo, esisterebbe necessariamente un valore finito p tale che $\lambda(p)$ sia positivo o nullo. Il teorema in questo caso è pure vero se l'integrale:

$$\int_{0}^{p} |a(r)| \cdot dr$$

ha un valore finito.