BOLLETTINO UNIONE MATEMATICA ITALIANA

ANTONIO COLUCCI

Qualche osservazione sulle funzioni convesse

Bollettino dell'Unione Matematica Italiana, Serie 1, Vol. 7 (1928), n.3, p. 139–142.

Unione Matematica Italiana

```
<http:
//www.bdim.eu/item?id=BUMI_1928_1_7_3_139_0>
```

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Qualche osservazione sulle funzioni convesse.

Nota di Antonio Colucci (a Napoli).

1. Secondo una definizione proposta da J. L. W. V. Jensen (¹), una funzione reale ed uniforme f(P) del punto $P(x_1, x_2, ..., x_n)$, definita in dominio T semplicemente connesso e convesso dello spazio euclideo ad n dimensioni, dicesi convessa in tale dominio se la somma dei valori che essa prende in due qualsivogliano punti di T non è mai inferiore del doppio del valore della funzione nel punto di mezzo del segmento determinato dai due punti.

In simboli, detti P_1 , P_2 i due punti e P il punto medio del segmento P_1P_2 , tale definizione si esprime ponendo:

$$f(P_1) + f(P_2) \ge 2f(P).$$

Il prof. P. Tortorici, negli ultimi due numeri del suo recente lavoro: «Sulle funzioni convesse» (²), si occupa della dimostrazione del noto teorema di Jensen: « una funzione f(x) convessa e limitata superiormente in un intervallo è continua in ogni punto interno all'intervallo», e della estensione di questa proprietà al caso delle funzioni convesse di più variabili. Egli, a tale proposito, dà il seguente enunciato:

« Una funzione f(P) convessa e limitata superiormente in un dominio Ω ad n dimensioni semplicemente connesso e convesso è ivi continua rispetto all'insieme delle sue variabili ».

Con le righe che seguono mi permetto di presentare ai lettori di questo « Bollettino » alcune mie considerazioni intorno alle funzioni convesse. Propriamente, mostrerò che i teoremi di Jensen e Tortorici restano ancora veri facendo sulla f(P) ipotesi assai più larghe di quelle fatte da questi Autori.

- 2. Supponiamo che la funzione convessa f(P) sia superiormente limitata sopra un segmento A_0B_0 contenuto nel dominio T. Esisterà
 - (4) « Acta Mathematica », t. 30, (1906), pp. 175-193.
 - (2) « Annali di Matematica », s. 4a, t. IV. (1927), pp. 147-150.

perciò una costante K tale da aversi, in ogni punto $P_{\rm 0}$ di detto segmento:

$$(1) f(P_0) \leq K.$$

Preso un punto R interno a T, ma non appartenente al segmento A_0B_0 , congiungiamolo col punto medio C_0 di A_0B_0 ; indi sul prolungamento di C_0R costruiamo un segmento RS contenuto in T e tale da aversi

$$mRS = C_0R$$

con m intero.

Ciò premesso, dividiamo il segmento C_0R in m parti uguali mediante i punti C_1 , C_2 ,..., C_{m-1} . e poniamo, per uniformità di esposizione, $C_m = R$, $C_{m+1} = S$. Infine, partendo dai punti A_0 e B_0 , costruiamo le due poligonali $A_0A_1...A_mC_{m+1}$. $B_0B_1...B_mC_{m+1}$, aventi per vertici intermedì i punti centrali dei segmenti C_2A_0 ,..., $C_{m+1}A_{m-1}$, e quelli dei segmenti C_2B_0 ,..., $C_{m+1}B_{m-1}$, rispettivamente. Otteniamo così la successione di segmenti paralleli (o collineari): A_0B_0 , A_1B_1 ..., A_mB_m , tutti contenuti in T. aventi per centri i punti C_0 , C_1 ,..., C_m , e tali che ognuno ha lunghezza metà del precedente.

Ora è chiaro che ad ogni punto P_m del segmento $A_m B_m$ se ne associano altri $m: P_{m-1}, P_{m-2}, ..., P_1, P_0$, situati sui segmenti $A_{m-1}B_{m-1}, A_{m-2}B_{m-2}, ..., A_1B_1, A_0B_0$ rispettivamente, tali che per due punti consecutivi qualsivoglia P_{i-1}, P_i (1) ha luogo la relazione:

$$2f(P_i) \leq f(P_{i-1}) + f(C_{i+1}).$$

Facendo in questa successivamente i = 1, 2..., m, e combinando le relazioni che così si ottengono con la (1) ricaviamo

$$f(P_m) \leq \frac{K}{2^m} + \sum_{i=2}^{m+1} \frac{f(C_i)}{2^{m-i+2}}.$$

Questa diseguaglianza ci mostra che f(P) è limitata superiormente nell'intervallo $A_m B_m$ di centro R. Ma R è un arbitrario punto interno a T, dunque:

Se la funzione f(P) è limitata superiormente sopra un segmento A_0B_0 contenuto in T, essa è tale su ogni segmento collineare o parallelo ad A_0B_0 , i cui estremi siano interni a T.

Mettendo in relazione il teorema di Jensen con la proposizione testè enunciata, si ha il seguente notevole teorema:

Una funzione f(P), convessa in un dominio T della specie considerata, e limitata superiormente sopra un segmento A_0B_0 apparte-

^(*) Da P_i si passa a P_{i-1} considerando il simmetrico di C_{i+1} rispetto a P_i .

nente a tale dominio, è continna su ogni segmento parallelo (collineare) ad A_0B_0 ed avente per estremi due punti interni a T.

In particolare: se una funzione (fx), convessa nell'intervallo (a, b). è superiormente limitata in un qualunque tratto di esso, tale funzione è continua in tutto l'intervallo.

Quest'ultimo enunciato fornisce il perfezionamento che intendevamo apportare al citato teorema di JENSEN.

3. Supponiamo ora che il dominio T sia a due dimensioni e che la funzione convessa f(P) sia superiormente limitata, o, ciò che è lo stesso, continua, sopra due segmenti non paralleli AB. CD di T.

Dico che la nostra funzione è continua superficialmente in ogni punto interno a T.

Infatti, sia P_0 un tale punto ed ε un numero positivo arbitrario. Per un teorema enunciato nel numero precedente, possiamo sempre determinare in T due segmenti A_0B_0 , C_0D_0 con centro in P_0 . paralleli ad AB, CD rispettivamente, e tali che per ogni punto L_0 del primo e per ogni punto M_0 del secondo risulti

$$|f(L_0) - f(P_0)| \leq \varepsilon, \quad |f(M_0) - f(P_0)| \leq \varepsilon.$$

Diciamo ora 2δ la minore delle lunghezze dei due segmenti A_0B_0 , C_0D_0 , e con centro P_0 descriviamo la circonferenza di raggio $\frac{\delta}{2}$ sen θ , θ essendo l'angolo dei due segmenti in esame. Preso un punto P nell'interno di detto cerchio, costruiamo il segmento L_0M_0 di centro P, avente gli estremi su A_0B_0 e C_0D_0 rispettivamente. Per la supposta convessità della funzione abbiamo

$$2f(P) \leq f(L_0) + f(M_0).$$

Se $f(P) \ge f(P_0)$, se ne trae che

$$2|f(P)-f(P_0)| \leq |f(L_0)-f(P_0)| + |f(M_0)-f(P_0)|,$$

e quindi per le (2)

$$|f(P)-f(P_0)| \leq \varepsilon.$$

Se, invece, $f(P) < f(P_0)$, detto P_1 , il simmetrico di P rispetto a P_0 sarà $f(P_1) > f(P_0)$, epperò

$$|f(P)-f(P_0)| \leq |f(P_0)-f(P_1)| \leq \varepsilon.$$

Con ciò resta in ogni caso provato che la funzione f(P) è continua in P_0 (su T).

4. Prima di enunciare il teorema generale col quale chiuderemo il presente scritto, vogliamo accennare brevemente al procedimento che permette di estendere al caso di n=3 il risultato testè conseguito.

Se per i punti L_0 , M_0 , N_0 , variabili su tre segmenti A_0B_0 , C_0D_0 , E_0F_0 di centro P_0 , non complanari, contenuti in un dominio T dello spazio a tre dimensioni, sono verificate simultaneamente le relazioni

$$|f(L_{\alpha})-f(P_{\alpha})| < \varepsilon$$
, $|f(M_{\alpha})-f(P_{\alpha})| < \varepsilon$, $|f(N_{\alpha})-f(P_{\alpha})| < \varepsilon$,

si riesce facilmente a concludere che in una certa sfera di centro P_0 , la funzione f(P), convessa in T, verifica la limitazione

$$|f(P)-f(P_0)| \leq \varepsilon$$
.

Basta infatti osservare che, detto P il baricentro del triangolo $L_0M_0N_0$, ha luogo la diseguaglianza

$$3f(P) \le f(L_0) + f(M_0) + f(N_0).$$

e che scelto comunque il punto P nell'interno di un'opportuna sfera di centro P_0 , i punti L_0 , M_0 . N_0 non escono mai fuori dai segmenti A_0B_0 . C_0D_0 . E_0F_0 .

Queste considerazioni si lasciano evidentemente estendere al caso di n > 3.

Possiamo perciò enunciare il seguente teorema generale:

Se una funzione convessa in un dominio **T** semplicemente connesso e convesso dello spazio ad n dimensioni è limitata superiormente su n segmenti di **T** aventi direzioni indipendenti, essa è continua (su **T**) in ogni punto interno a tale dominio.

Napoli. aprile 1928.