BOLLETTINO UNIONE MATEMATICA ITALIANA

G. THOMSEN

Un teorema topologico sulle schiere di curve e una caratterizzazione geometrica delle superficie isotermo-asintotiche

Bollettino dell'Unione Matematica Italiana, Serie 1, Vol. 6 (1927), n.2, p. 80–85.

Unione Matematica Italiana

```
<http:
//www.bdim.eu/item?id=BUMI_1927_1_6_2_80_0>
```

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Un teorema topologico sulle schiere di curve e una caratterizzazione geometrica delle superficie isotermo-asintotiche.

Nota di G. THOMSEN (ad Hamburg).

Sia dato nel piano un sistema C di curve.

Le curve siano differenziabili tre volte.

Per ogni punto d'un certo campo G di regolarità passino tre curve differenti, che non si toccano, una per ogni sistema. Noi dimostreremo:

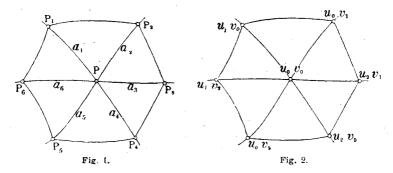
Affinché esista una trasformazione continua e biunivoca dei punti di G sui punti d'un campo G* d'un altro piano, che trasformi le curve C in tre schiere di rette parallele di G*, è necessario e sufficiente, che nel sistema C valga la configurazione seguente, che noi vogliamo chiamare la configurazione degli esagoni.

Indichiamo i sei tratti delle tre curve uscenti da un punto P di G, colle lettere $a_1, a_2 \dots a_6$, come mostra la fig. 1.

Scegliendo sopra a_1 un nuovo punto P_1 , si può trarre per P_1 la curva del sistema, appartenente alla terza schiera, diversa da quella di a_1 e quella di a_2 . Questa curva sega a_2 in un punto P_2 .

Conduciamo poi per P_2 la curva terza del sistema, che manca ancora, fino all'intersezione P_3 con a_3 ; così continuando si trae da P_3 il punto P_4 ecc. Se si trae in ultimo da P_6 la curva fino all'intersezione con a_1 , si troverà generalmente un punto P_7 , differente da P_1 .

Ora noi diciamo: Nel nostro sistema C di curve vale la configurazione degli esugoni, se — P e P₁ essendo arbitrarii — si perviene



per ogni figura, che si estende nell'interno del campo G, ad un esagono chiuso.

Per la dimostrazione del teorema enunciato in principio, introduciamo tali coordinate curvilinee u, v, che $u = \cos t$, $v = \cos t$. rappresentino due delle schiere del sistema.

Poi la terza sia data nella forma

$$\varphi(u, v) = \cos t$$
.

Noi possiamo ammettere, che $\varphi_n \neq 0$ e $\varphi_n \neq 0$, perchè altrimenti almeno due delle tre curve si toccherebbero in un punto. Siano u_0 , v_0 le coordinate di P. Per gli altri punti possiamo introdurre nel caso dell'esagono chiuso le coordinate indicate nella fig. 2. Essa mostra, che P_2 , P e P_5 stanno sulla curva $u = u_0$, P_1 e P_6 sulla $u = u_1$, P_3 e P_4 sulla $u = u_2$, poi P_1 , P e P_4 sulla curva $v = v_0$, P_2 e P_3 sulla $v = v_1$, v_2 e v_3 sulla $v = v_4$. Inoltre v_4 e v_4 e v_4 e v_4 e v_4 e v_4 onde segue:

$$\varphi(u_0, v_1) = \varphi(u_1, v_0)$$

(2)
$$\varphi(u_2, v_1) = \varphi(u_0, v_0) = \varphi(u_1, v_2)$$

(3)
$$\varphi(u_0, v_2) = \varphi(u_2, v_0).$$

Qui sono arbitrarii col punto P le grandezze u_0 , v_0 , e poi col punto P_1 , che si può scegliere arbitrariamente sulla $v=v_0$, anche u_1 .

Quando è data la schiera $\varphi=\cos t$. si determina v_1 e quindi anche P_2 da u_0 , v_0 , u_1 secondo (1). Da $(2)_1$ poi si determinano u_2 e il punto P_3 ; quindi nello stesso tempo viene fissato anche P_4 , perchè u_2 e v_0 sono noti. Da (3) si può trarre v_2 , (quindi P_5), e poi sono note anche le coordinate u_1 , v_2 di P_6 .

Per conseguenza noi possiamo ammettere, che le equazioni

$$\varphi(u_0, v_1) = \varphi(u_1, v_0)$$

$$\varphi(\boldsymbol{u_2}, \boldsymbol{v_1}) = \varphi(\boldsymbol{u_0}, \boldsymbol{v_0})$$

$$\varphi(u_0, v_2) = \varphi(u_2, v_0)$$

servano alla determinazione di v_1, v_2, v_2 dalle grandezze arbitrarie u_0, v_0, u_1 .

La validità della configurazione degli esagoni si esprime in maniera, che in P_6 si incontrano le tre curve: la curva $u=u_1$ per P_1 , la curva $v=v_2$ per P_5 è la curva $\varphi=\varphi(u_0,v_0)$ per P. Ha valore dunque per le coordinate di P_6 l'equazione $(2)_b$:

$$\varphi(u_1, v_2) = \varphi(u_0, v_0).$$

Quindi: La funzione φ deve essere tale, che l'equazione (7) venga soddisfatta identicamente per tutti i valori arbitrarii di \mathbf{u}_0 , \mathbf{v}_0 , \mathbf{u}_1 e i valori corrispondenti di \mathbf{v}_1 , \mathbf{u}_2 , \mathbf{v}_2 determinati da (4) (5) (6).

Dobbiamo naturalmente aggiungere, che ciò che precede vale necessariamente solo per quelli u_0 , $v_0.u_1...v_2$, per i quali l'esagono si trova nell'interno di G.

Essendo $\{u_0, v_0\}$ un punto di G questa condizione sarà sempre soddisfatta, se u_1 e u_2 differiscono abbastanza poco da u_0 , e se v_1 e v_2 differiscono abbastanza poco da v_0 .

Fissiamo prima il punto $P \mid u_0, v_0 \mid$ e esaminiamo la totalità degli esagoni con questo « centro ». Allora per tutti i valori di u_1 abbastanza vicini a u_0 e i corrispondenti v_1, u_2, v_2 determinati da (4) (5) (6), deve valere la (7) identicamente.

Ora sviluppiamo l'equazioni (4) (5) (6) (7) nell'intorno del punto u_0 , v_0 per potenze di $u_i = u_i - u_0[i = 1, 2]$ e $\bar{v_i} = v_{i'} - v_0$.

La (4) dà:

dove il segno ° sopra le φ indica, che le funzioni corrispondenti devono essere calcolate pel punto $\{u_0, v_0\}$. Ma noi ometteremo il segno ° nella trattazione seguente per semplicità di scrittura.

Ricaviamo v_1 in funzione di \bar{u}_1 dalla (4_a) . Poniamo:

(8)
$$\bar{v}_1 = A\bar{u}_1 + Bu_1^2 + C\bar{u}_1^3 + \dots!$$

Il paragone dei coefficienti in (4a) fornisce:

(9)
$$A = \frac{\varphi_u}{\varphi_v}; \quad B = \frac{1}{2\varphi_v^3} (\varphi_{uu} \varphi_v^2 - \varphi_{vv} \varphi_u^2)$$

$$C = \frac{1}{6\varphi_v^4} (\varphi_{uuu} \varphi_v^3 - \varphi_{vvv} \varphi_u^3) - \frac{\varphi_u \varphi_{vv}}{\varphi_v^2} B.$$

Adesso possiamo introdurre il valore di \bar{v}_1 , dato da (8) e (9), nella (5). Sviluppiamo prima questa equazione (5) nella serie:

$$\frac{\varphi + \bar{u}_{2}\varphi_{n} + \bar{v}_{1}\varphi_{v} + \frac{1}{2}(\bar{u}_{z}^{2}\varphi_{nu} + 2\bar{u}_{z}\bar{v}_{1}\varphi_{uv} + \bar{v}_{1}^{2}\varphi_{vv})}{+\frac{1}{6}(\bar{u}_{z}^{3}\bar{\varphi}_{nuu} + 3\bar{u}_{z}^{2}\bar{v}_{1}\varphi_{nuv} + 3\bar{u}_{z}\bar{v}_{1}^{2}\varphi_{uvv} + \bar{v}_{1}^{3}\varphi_{vvv}) + \dots = \varphi.$$

Introducendo la (8) nella (5,,), abbiamo;

$$\begin{split} &(\overline{u}_1 + \overline{u}_2)\varphi_n + \frac{1}{2}(\overline{u}_1^2 + \overline{u}_2^2)\varphi_{nn} + \overline{u}_1\overline{u}_2\frac{\varphi_n\varphi_{nr}}{\varphi_r} \\ &(10) - + \frac{1}{6}(\overline{u}_1^3 + \overline{u}_2^3)\varphi_{nnn} + \frac{1}{2}\overline{u}_1^2\overline{u}_2 \bigg[\varphi_{nrr}\frac{\varphi_n^2}{\varphi_r^2} + \frac{\varphi_{nr}}{\varphi_r^3}(\varphi_{nn}\varphi_r^2 - \varphi_{rr}\varphi_n^2) \bigg] \\ &+ \frac{1}{2}\overline{u}_1\overline{u}_2^2\frac{\varphi_{nrr}\varphi_n}{\varphi_r} + \ldots = 0 \,. \end{split}$$

Nello stesso modo come \overline{v}_1 da \overline{u}_1 mediante la (4), possiamo anche calcolare \overline{v}_2 da \overline{u}_2 per mezzo la (6). Siccome nelle due equazioni (4) e (6) sono scambiati soltanto gli indici 1 e 2 presso gli u, v, avremo qui:

(11)
$$\bar{v}_2 = A\bar{u}_2 + B\bar{u}_2^2 + C\bar{u}_2^3 + \dots$$

cogli stessi coefficienti A, B, C, che figuravano anche nella (8), dati da (9).

Introducendo il valore v_2 , dato dalla (11) nell'equazione (7) nella stessa maniera, come abbiamo introdotto il valore (8) di \overline{v}_1 nella (5), ricaveremo una equazione (12). Poichè anche (5) e (7) differiscono soltanto negli indici 1 e 2 scambiati, avremo:

Ora però, se noi fissiamo u_0 e v_0 , l'equazione (12) deve valere identicamente per tutti i valori di u_1 , u_2 abbastanza vicini a u_0 ,

che soddisfano la (10). Pereiò la (12) deve essere la stessa equazione in \overline{u}_1 , \overline{u}_2 come la (10), ad eccezione tutt'al più d'un fattore nel suo primo membro. Ma questo fattore è eguale a 1, perchè i termini fino al terzo ordine negli \overline{u}_1 , \overline{u}_2 nella (10) e nella (12) sono identici ad eccezione soltanto dei fattori di $\overline{u}_1^2\overline{u}_2$ e $\overline{u}_1\overline{u}_2^2$. Pel fatto che il coefficiente di $\overline{u}_1^2\overline{u}_2$ nella (10) è nello stesso tempo il coefficiente di $\overline{u}_1\overline{u}_2^2$ in (12) e viceversa, devono essere eguali i due coefficienti di $\overline{u}_1^2\overline{u}_2$ e $\overline{u}_1\overline{u}_2^2$ in (10).

Quindi segue:

$$\varphi_{uuu}\frac{\varphi_u}{\varphi_v} = \varphi_{vvv}\frac{\varphi_u^2}{\varphi_v^2} + \frac{\varphi_{uv}}{\varphi_v^3}\varphi_{uu}\varphi_v^2 - \varphi_{vv}\varphi_u^2$$

o anche

$$\frac{\varphi_{uur}\varphi_u - \varphi_{uu}\varphi_{uv}}{\varphi_{uz}} = \frac{\varphi_{rru}\varphi_v - \varphi_{rv}\varphi_{ru}}{\varphi_r^2}$$

o alfine

$$(13) \qquad (\lg \varphi_u)_{uv} = (\lg \varphi_v)_{uv}.$$

La (13) vale come per il « centro » $\{u_0, u_0\}$ anche per ogni altro centro in G; quindi essa vale nel campo G degli u, v identicamente.

Dalla (13) si ricava per integrazione:

$$\varphi_u \cdot U = \varphi_v \cdot V$$

dove U è una funzione dell'unico argomento u, e V è una funzione di v. Per una scelta conveniente dei parametri u, v sulle curve $u = \cos t$, $v = \cos t$. si può fare U = V = 1.

L'integrazione della equazione $\varphi_u = \varphi_v$ fornisce allora

$$\varphi = f(u + v),$$

dov'è f una funzione dell'unico argomento u+v. Le curve $\varphi=\cos t$, sono dunque le curve

$$u+v=\cos t$$
.

Con questo la dimostrazione è finita, poichè noi possiamo prendere gli u, v come coordinate cartesiane d'un nuovo piano. Ora al campo G corrisponde un campo G^* di questo piano cartesiano, nel quale le tre schiere di curve $u = \cos t$, $v = \cos t$, $u + v = \cos t$. sono delle rette. Poichè viceversa i sistemi di tre schiere di rette e i loro trasformati posseggono la configurazione degli esagoni, la proprietà enunciata è caratteristica per essi.

Col nostro teorema si possono caratterizzare geometricamente le superficie isotermo-asintotiche, che rappresentano nella geometria proiettivo-differenziale una delle famiglie più importanti (1). Su queste superficie si può, come è noto, nel caso della curvatura ellittica introdurre tali parametri u, v, che le tre schiere delle curve di Darboux sono date da

$$u = \text{cost.}; \quad v = \text{cost.}; \quad u + v = \text{cost};$$

ma nel caso d'una curvatura iperbolica si possono introdurre tali parametri, in guisa che le linee asintotiche vengono rappresentate da $u = \cos t$, $v = \cos t$, e l'unica schiera reale delle curve di DARBOUX da $u + v = \cos t$.

Quindi:

Fra le superficie a curvatura ellittica le superficie isotermoasintotiche sono le sole, sulle quali le tre schiere reali delle curve di Darboux godono della configurazione degli esagoni; fra le superficie curvate iperbolicamente le isotermo-asintotiche sono le uniche che hanno due schiere di asintotiche e una schiera di curve di Darbuox, tutte e tre reali, che possiedono insieme quella configurazione.

Se noi chiamiamo traiettorie anarmoniche del nostro sistema quelle curve, che segano in ogni punto le tre curve del sistema secondo un birapporto costante, la configurazione vale anche per tre schiere anarmoniche arbitrarie, che corrispondono a tre valori fissi del birapporto. Poichè le traiettorie anarmoniche del nostro sistema di tre schiere di rette parallele sono egualmente rette. Sulle superficie isotermo-asintotiche vale dunque quella configurazione anche per ogni tale terna di schiere di curve anarmoniche (²).

Alla fine menzioniamo ancora un teorema sulle superficie isoterme ordinarie, sulle quali le linee di curvatura formano una rete isoterma: Le superficie isoterme si caratterizzano in modo che tre schiere arbitrarie di traiettorie isogonali delle linee di curvatura, corrispondenti a tre valori fissi d'angolo, possiedono la configurazione degli esagoni.

⁽¹⁾ G. Fubini-E. Cech: Geometria proiettiva-differenziale, Tomo I, (pag. 109 e § 51).

⁽²⁾ Il primo a considerare le curve anarmoniche della curve di Darboux sopra una superficie è stato E. Bompiani: Le forme di Fubini nella teoria proiettiva delle superficie. (Ist. Lombardo, vol. LVII, 1924, n. 4). Il Bompiani ha dimostrato nello stesso numero della nota citata che per le superficie isotermo-asintotiche e per esse soltanto è possibile una rappresentazione che muti le asintotiche della superficie in un reticolato cartesiano e le curve anarmoniche in rette del piano.